Endocannabinoids are lipid mediators that exhibit analgesic, neuroprotective, and anti-inflammatory activities through cannabinoid receptors. The two most studied endocannabinoids are derivatives of arachidonic acid (AA) - i.e., 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamide (AEA). AA is a substrate for the cyclooxygenase enzymes (COX-1 and COX-2), which carry out the committed step in prostaglandin (PG) biosynthesis. We discovered that 2-AG and AEA are oxygenated by COX-2 much more efficiently than by COX-1 and, like AA, are oxygenated to intermediates that are converted into glycerol ester and ethanolamide analogs of PGs (i.e., PG-Gs and PG-EAs). These analogs exert potent biological activities that are independent of classical PG receptors. Thus, endocannabinoids may be the substrates for a COX-2-selective signal transduction pathway. Oxygenation by the COX enzymes is inhibited by nonsteroidal anti-inflammatory drugs (NSAIDs), which contributes to their pharmacological activity. Very recently, we discovered that NSAIDs which are classified as weak, reversible inhibitors of AA oxygenation are potent, poorly reversible inhibitors of 2-AG and AEA oxygenation. This "substrate-selective" inhibition provides a mechanism by which endocannabinoid metabolism through COX-2 can be inhibited without any impact on AA metabolism. Particularly exciting is our discovery that (R)-enantiomers of arylpropionic acid NSAIDs (e.g., (R)-flurbiproten), which were previously thought to be inactive against COX enzymes, are efficient inhibitors of 2-AG oxygenation by COX-2 in vitro and in cultured dorsal root ganglion cells. This finding may explain the analgesic activity of (f?)-flurbiproten in humans and in animal models of neuropathic pain. The latter has been associated with elevation of endocannabinoid levels in the spinal cord. We propose to elucidate the molecular determinants of substrate-selective inhibition of COX-2 by (R)-NSAIDs using a combination of site-directed mutagenesis, structure-activity analysis, and X-ray crystallography. We will use this information to optimize the potency and selectivity of this class of agents and evaluate the most promising compounds in dorsal root ganglion cells and the chronic constriction model of neuropathic pain. We will also identify the enzyme(s) that hydrolyze PG-Gs to PGs, thereby limiting their half-lives and biological activities. This will provide new insights into NSAID action and tools and drug candidates focused on the COX-2-endocannabinoid metabolism and signaling pathway.

Public Health Relevance

The COX-2 pathway of endocannabinoid metabolism depletes nervous tissue of naturally occurring pain relievers and produces compounds that stimulate pain and neurotoxicity. We have discovered a mechanism to selectively turn off this pathway that could represent a new strategy for developing drugs against neuropathic pain. Our investigations will elucidate the basis for drug-target interactions and provide the foundation for new drug discovery directed against the COX-2-endocannabinoid pathway.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM015431-45
Application #
8379503
Study Section
Special Emphasis Panel (ZGM1-PPBC-6)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
45
Fiscal Year
2012
Total Cost
$325,492
Indirect Cost
$117,707
Name
Vanderbilt University Medical Center
Department
Type
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Kong, Deping; Shen, Yujun; Liu, Guizhu et al. (2016) PKA regulatory IIα subunit is essential for PGD2-mediated resolution of inflammation. J Exp Med 213:2209-26
Montaniel, Kim Ramil C; Harrison, David G (2016) Is Hypertension a Bone Marrow Disease? Circulation 134:1369-1372
Gamble-George, Joyonna Carrie; Baldi, Rita; Halladay, Lindsay et al. (2016) Cyclooxygenase-2 inhibition reduces stress-induced affective pathology. Elife 5:
Harrison, D G; Guzik, Tomasz J (2016) Macrophages come to mind as keys to cognitive decline. J Clin Invest 126:4393-4395
Martin, Sarah A; Brash, Alan R; Murphy, Robert C (2016) The discovery and early structural studies of arachidonic acid. J Lipid Res 57:1126-32
Wu, Jing; Saleh, Mohamed A; Kirabo, Annet et al. (2016) Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126:50-67
Vergeade, Aurelia; Bertram, Clinton C; Bikineyeva, Alfiya T et al. (2016) Cardiolipin fatty acid remodeling regulates mitochondrial function by modifying the electron entry point in the respiratory chain. Mitochondrion 28:88-95
Wu, Jing; Montaniel, Kim Ramil C; Saleh, Mohamed A et al. (2016) Origin of Matrix-Producing Cells That Contribute to Aortic Fibrosis in Hypertension. Hypertension 67:461-8
Boutaud, Olivier; Sosa, I Romina; Amin, Taneem et al. (2016) Inhibition of the Biosynthesis of Prostaglandin E2 By Low-Dose Aspirin: Implications for Adenocarcinoma Metastasis. Cancer Prev Res (Phila) 9:855-865
Itani, Hana A; Xiao, Liang; Saleh, Mohamed A et al. (2016) CD70 Exacerbates Blood Pressure Elevation and Renal Damage in Response to Repeated Hypertensive Stimuli. Circ Res 118:1233-43

Showing the most recent 10 out of 116 publications