essenger RNAs are typically thought of as passive carriers of genetic information that are acted upon by protein- or small RNA-regulatory factors and by ribosomes during the process of translation. Recently, we have found that the 5'-untranslated regions (UTRs) of numerous bacterial mRNAs serve a more proactive role in metabolic monitoring and genetic control. RNA genetic switches called riboswitches selectively bind metabolites without the need for proteins, and subsequently modulate gene expression by several distinct mechanisms. Riboswitches exhibit striking complexity in structure and action, and our findings indicate that cells from all three domains of life use these metabolite-sensing RNAs to control fundamental metabolic pathways. Furthermore, we have evidence that riboswitches or their components sometimes occur in tandem and that these arrangements lead to even greater gene control sophistication. We propose to continue our efforts to establish the basic features of new-found classes of riboswitches, with particular emphasis on the characterization of two novel classes that bind cyclic di-GMP and tetrahydrofolate. These analyses of the structural and functional characteristics of novel riboswitch systems are intended to establish the basic principles of riboswitch molecular recognition and function. Our findings will increase our understanding of bacterial gene control mechanisms, facilitate atomic-resolution structural analyses of riboswitch RNAs, and provide possible new targets for antimicrobial drug development.

Public Health Relevance

We propose to establish the detailed mechanisms by which at least two riboswitch classes in bacteria bind ligands and control the expression of genes involved in coenzyme and second messenger metabolism. A series of biochemical and genetic techniques will be applied to establish molecular recognition characteristics of the riboswitch aptamers and the mechanisms for gene control used by the adjoining expression platforms

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-BCMB-K)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
New Haven
United States
Zip Code
Warkentin, Matthew; Hopkins, Jesse B; Haber, Jonah B et al. (2014) Temperature-dependent radiation sensitivity and order of 70S ribosome crystals. Acta Crystallogr D Biol Crystallogr 70:2890-6
Wang, Jimin; Wing, Richard A (2014) Diamonds in the rough: a strong case for the inclusion of weak-intensity X-ray diffraction data. Acta Crystallogr D Biol Crystallogr 70:1491-7
Roth, Adam; Weinberg, Zasha; Chen, Andy G Y et al. (2014) A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol 10:56-60
Wang, Jimin; Li, Yue; Modis, Yorgo (2014) Exploiting subtle structural differences in heavy-atom derivatives for experimental phasing. Acta Crystallogr D Biol Crystallogr 70:1873-83
McCown, Phillip J; Liang, Jonathan J; Weinberg, Zasha et al. (2014) Structural, functional, and taxonomic diversity of three preQ1 riboswitch classes. Chem Biol 21:880-9
Polikanov, Yury S; Steitz, Thomas A; Innis, C Axel (2014) A proton wire to couple aminoacyl-tRNA accommodation and peptide-bond formation on the ribosome. Nat Struct Mol Biol 21:787-93
Askerka, Mikhail; Wang, Jimin; Brudvig, Gary W et al. (2014) Structural changes in the oxygen-evolving complex of photosystem II induced by the S1 to S2 transition: A combined XRD and QM/MM study. Biochemistry 53:6860-2
Polikanov, Yury S; Szal, Teresa; Jiang, Fuyan et al. (2014) Negamycin interferes with decoding and translocation by simultaneous interaction with rRNA and tRNA. Mol Cell 56:541-50
Wang, Jimin; Li, Yue; Modis, Yorgo (2014) Structural models of the membrane anchors of envelope glycoproteins E1 and E2 from pestiviruses. Virology 454-455:93-101
Nelson, James W; Sudarsan, Narasimhan; Furukawa, Kazuhiro et al. (2013) Riboswitches in eubacteria sense the second messenger c-di-AMP. Nat Chem Biol 9:834-9

Showing the most recent 10 out of 48 publications