The goal of component 2 is to study the specificity of protein-protein interactions and substrate recognition processes involved in the biosynthesis of natural products by applying NMR spectroscopy. The overwhelming majority of antibiotics and chemotherapeutics are natural products, many of which are biosynthesized by Non-Ribosomal Peptide Synthetases (NRPSs). These assembly line protein clusters can reach up to mega-Dalton size. NRPS products include antibiotics, antitumor agents, antiviral and immunosuppressive drugs, and fungal or bacterial toxins. In contrast to ribosomal protein synthesis, little is known about the mechanisms by which NRPSs assemble their products. Structural data on isolated domains become increasingly available but little is known about mechanisms of protein interactions or substrate recognition, which must involve precise recognition of activated substrates, growing chains, and final hydrolysis and release from the assembly line. All substrate recognition and protein interaction processes must be mediated by the terniary structures of the domains and modules of the synthetases, since no coding is available as it is for ribosomal peptide biosynthesis. Basic mechanisms ofthe recognition are widely unknown. We propose to study the processes of domain interactions and the specificity of substrate recognition in this enterobactin synthetase NRPS cluster. The assembly line for the iron chelator enterobactin consists ofthe short one module NRPS EntF, and a split module formed by the isolated enzyme EntE and the di-domainal EntB. Since enterobactin synthetases are widely conserved in enterobacteria they are emerging targets for development of new antibacterial drugs.
Our specific aims are: 1: Structures of holo-EntF T-TE di-domain and ofthe condensation domain EntF C 2: Structure, dynamics and interactions between the EntF A and T domains. 3: Complex formation and dynamic interactions of full-length type I NRPS EntF. 4: Substrate localization and mechanistic studies of the Ent NRPS assembly. 5: Structure-based design of inhibitors to support anti-microbial therapies.

Public Health Relevance

Understanding the structural principles by which substrates are specifically recognized and incorporated may allow the exploration of genetically encoded clusters for the biosynthesis or engineering of new assembly lines for production of novel molecules that could alleviate the emergence of multiple and extreme drug resistance against the majority of established antibiotics including last resort treatments.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
2P01GM047467-21A1
Application #
8533515
Study Section
Special Emphasis Panel (ZRG1-BCMB-S (40))
Project Start
Project End
Budget Start
2013-05-06
Budget End
2014-04-30
Support Year
21
Fiscal Year
2013
Total Cost
$441,653
Indirect Cost
$106,828
Name
Harvard University
Department
Type
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Chhabra, Sandeep; Fischer, Patrick; Takeuchi, Koh et al. (2018) 15N detection harnesses the slow relaxation property of nitrogen: Delivering enhanced resolution for intrinsically disordered proteins. Proc Natl Acad Sci U S A 115:E1710-E1719
Zhao, Zhao; Zhang, Meng; Hogle, James M et al. (2018) DNA-Corralled Nanodiscs for the Structural and Functional Characterization of Membrane Proteins and Viral Entry. J Am Chem Soc 140:10639-10643
Hagn, Franz; Nasr, Mahmoud L; Wagner, Gerhard (2018) Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat Protoc 13:79-98
Nasr, Mahmoud L; Wagner, Gerhard (2018) Covalently circularized nanodiscs; challenges and applications. Curr Opin Struct Biol 51:129-134
Coote, Paul W; Robson, Scott A; Dubey, Abhinav et al. (2018) Optimal control theory enables homonuclear decoupling without Bloch-Siegert shifts in NMR spectroscopy. Nat Commun 9:3014
Ziarek, Joshua J; Baptista, Diego; Wagner, Gerhard (2018) Recent developments in solution nuclear magnetic resonance (NMR)-based molecular biology. J Mol Med (Berl) 96:1-8
Näär, Anders M (2018) miR-33: A Metabolic Conundrum. Trends Endocrinol Metab 29:667-668
Brazin, Kristine N; Mallis, Robert J; Boeszoermenyi, Andras et al. (2018) The T Cell Antigen Receptor ? Transmembrane Domain Coordinates Triggering through Regulation of Bilayer Immersion and CD3 Subunit Associations. Immunity 49:829-841.e6
Hyberts, Sven G; Robson, Scott A; Wagner, Gerhard (2017) Interpolating and extrapolating with hmsIST: seeking a tmax for optimal sensitivity, resolution and frequency accuracy. J Biomol NMR 68:139-154
Nasr, Mahmoud L; Baptista, Diego; Strauss, Mike et al. (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14:49-52

Showing the most recent 10 out of 245 publications