The purpose of this Core C is to provide the computational expertise and resources needed for the research in this program project grant. In addition to this supporting function, the Core will perform research towards designing enhanced data acquisition and processing tools. During the current funding period we have made great progress towards optimized sampling schedules, such as the Poisson-Gap sampling, which has shown superior signal to noise and sensitivity. The FM-reconstruction together with a distill procedure has been developed and ported to computing environment using Nvidia GPU cards and is now very fast. We propose to further optimize sampling and processing methods. We realized that the distill procedure we developed is closely related to the IST (iterative soft threshold) method that has recently been reported. We have developed a new implementation of the IST approach, termed istHMS. This is very fast and allows now acquisition of 3D and 4D spectra with resolution in the indirect dimensions approaching those achievable in the direct dimensions. We have already shown that 4D methyl-methyl TROSY-NOESY experiments can be recorded with as little as 0.3 % sparsity, sampling to 118 ms in the indirect dimensions, and can be reconstructed with istHMS in less than a day. The requested upgrade of our computing cluster and code improvement will shorten reconstruction time by at least an order of magnitude. The computational innovations will have high impact on NMR spectroscopy of large proteins. We will also engage in developing new tools for automated assignments that utilize new experiments being developed here or in the NMR community elsewhere. We will pursue the following specific aims: 1. Design Optimal data acquisition strategies and educate scientists in their use. 2. Develop and apply optimized and new processing methods for NUS data. 3. Provide the environment and expertise with modeling, structure calculations and docking. 4. Maintain the existing computing hardware and install new computers. 5. Training and dissemination.

Public Health Relevance

Computation is key to efficient use of modern NMR spectroscopy. Optimally designed sampling and processing methods can dramatically enhance spectrometer performance by extending spectrometer resolution by more than an order of magnitude. Only with advanced acquisition and processing methods can the capabilities of modern high field instruments fully utilized. However, average users have to be trained to use these tools, and the computational resources have to be kept state of the art.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard Medical School
United States
Zip Code
Hyberts, Sven G; Robson, Scott A; Wagner, Gerhard (2017) Interpolating and extrapolating with hmsIST: seeking a tmax for optimal sensitivity, resolution and frequency accuracy. J Biomol NMR 68:139-154
Nasr, Mahmoud L; Baptista, Diego; Strauss, Mike et al. (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14:49-52
Coote, Paul; Anklin, Clemens; Massefski, Walter et al. (2017) Rapid convergence of optimal control in NMR using numerically-constructed toggling frames. J Magn Reson 281:94-103
Sekiyama, Naotaka; Boeszoermenyi, Andras; Arthanari, Haribabu et al. (2017) 1H, 13C, and 15N backbone chemical shift assignments of 4E-BP144-87 and 4E-BP144-87 bound to eIF4E. Biomol NMR Assign 11:187-191
Obayashi, Eiji; Luna, Rafael E; Nagata, Takashi et al. (2017) Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5. Cell Rep 18:2651-2663
Das, Dibyendu Kumar; Mallis, Robert J; Duke-Cohan, Jonathan S et al. (2016) Pre-T Cell Receptors (Pre-TCRs) Leverage V? Complementarity Determining Regions (CDRs) and Hydrophobic Patch in Mechanosensing Thymic Self-ligands. J Biol Chem 291:25292-25305
Sun, Zhen-Yu J; Bhanu, Meera K; Allan, Martin G et al. (2016) Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins. PLoS One 11:e0163660
Salvi, Nicola; Papadopoulos, Evangelos; Blackledge, Martin et al. (2016) The Role of Dynamics and Allostery in the Inhibition of the eIF4E/eIF4G Translation Initiation Factor Complex. Angew Chem Int Ed Engl 55:7176-9
Ilic, Stefan; Akabayov, Sabine R; Arthanari, Haribabu et al. (2016) Identification of DNA primase inhibitors via a combined fragment-based and virtual screening. Sci Rep 6:36322
Kozel, Caitlin; Thompson, Brytteny; Hustak, Samantha et al. (2016) Overexpression of eIF5 or its protein mimic 5MP perturbs eIF2 function and induces ATF4 translation through delayed re-initiation. Nucleic Acids Res 44:8704-8713

Showing the most recent 10 out of 236 publications