The overall goal of the proposed research is to empower NMR spectroscopy for characterizing large and biologically significant proteins and protein complexes. This will lead to new insights into biological mechanisms and will ultimately lead to improving human health. Proteins function primarily by interacting with other proteins, nucleic acids, small ligands or substrates. Thus, the overall goal of this grant is to understand mechanism based on structural insights, with a focus on protein interactions. This will be achieved with developing a set of NMR methods that can characterize challenging protein complexes in the range of 50 kDa and beyond. All components of the proposal contain both technology developments and applications to important targets that play roles in disease, are potential drug targets, or producers of natural products. Component 1 (Wagner) is on NMR approaches for structural characterization of large proteins and protein complexes. It will develop new methods for studies of proteins and protein complexes and will apply these for characterizing interactions of a viral internal ribosome entry site (IRES) RNA with translation initiation factors. Component 2 (Wagner/Walsh) is on the Enterobactin non-ribosomal peptide synthetase. It will solve structures of large mufti-domain units of this system and determine structures of complexes between EntF and EntB. Component 3 (Reinherz) will elucidate the structure and function of the signaling elements of the T-cell receptor. Component 4 (Naar) will investigate the structure and function of the pleiotropic drug resistance system of pathogenic yeast. The research will be supported by three cores for Administration (Core A), NMR instrumentation and Chemistry (Core B) and Computation (Core C). The interaction between the research components and cores of this POI grant simulated the development of many new NMR and data processing techniques that now facilitate structural studies of challenging macromolecular systems. We anticipate that the proposed research will continue to advance the capabilities of NMR for structural biology.

Public Health Relevance

The research proposed by the closely interacting research components will enhance the capabilities of NMR for solving structures of larger and more complex proteins and protein complexes. Elucidating how proteins interact will open avenues for understanding biological mechanisms and will point to new possibilities for drug design and cure human diseases.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Wehrle, Janna P
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Harvard Medical School
Schools of Medicine
United States
Zip Code
Hyberts, Sven G; Robson, Scott A; Wagner, Gerhard (2017) Interpolating and extrapolating with hmsIST: seeking a tmax for optimal sensitivity, resolution and frequency accuracy. J Biomol NMR 68:139-154
Nasr, Mahmoud L; Baptista, Diego; Strauss, Mike et al. (2017) Covalently circularized nanodiscs for studying membrane proteins and viral entry. Nat Methods 14:49-52
Coote, Paul; Anklin, Clemens; Massefski, Walter et al. (2017) Rapid convergence of optimal control in NMR using numerically-constructed toggling frames. J Magn Reson 281:94-103
Sekiyama, Naotaka; Boeszoermenyi, Andras; Arthanari, Haribabu et al. (2017) 1H, 13C, and 15N backbone chemical shift assignments of 4E-BP144-87 and 4E-BP144-87 bound to eIF4E. Biomol NMR Assign 11:187-191
Obayashi, Eiji; Luna, Rafael E; Nagata, Takashi et al. (2017) Molecular Landscape of the Ribosome Pre-initiation Complex during mRNA Scanning: Structural Role for eIF3c and Its Control by eIF5. Cell Rep 18:2651-2663
Das, Dibyendu Kumar; Mallis, Robert J; Duke-Cohan, Jonathan S et al. (2016) Pre-T Cell Receptors (Pre-TCRs) Leverage V? Complementarity Determining Regions (CDRs) and Hydrophobic Patch in Mechanosensing Thymic Self-ligands. J Biol Chem 291:25292-25305
Sun, Zhen-Yu J; Bhanu, Meera K; Allan, Martin G et al. (2016) Solution Structure of the Cuz1 AN1 Zinc Finger Domain: An Exposed LDFLP Motif Defines a Subfamily of AN1 Proteins. PLoS One 11:e0163660
Salvi, Nicola; Papadopoulos, Evangelos; Blackledge, Martin et al. (2016) The Role of Dynamics and Allostery in the Inhibition of the eIF4E/eIF4G Translation Initiation Factor Complex. Angew Chem Int Ed Engl 55:7176-9
Ilic, Stefan; Akabayov, Sabine R; Arthanari, Haribabu et al. (2016) Identification of DNA primase inhibitors via a combined fragment-based and virtual screening. Sci Rep 6:36322
Kozel, Caitlin; Thompson, Brytteny; Hustak, Samantha et al. (2016) Overexpression of eIF5 or its protein mimic 5MP perturbs eIF2 function and induces ATF4 translation through delayed re-initiation. Nucleic Acids Res 44:8704-8713

Showing the most recent 10 out of 236 publications