This Core will carry out five main and distinct activities: peptide synthesis, peptide analysis and characterization, mass spectrometric analysis of synthetic and native peptides, methodological developments as required by synthetic and analytical challenges and discovery projects. Peptide synthesis will be done using the solid phase approach and either Boc or Fmoc strategies. Peptide analysis and characterization will use HPLC, CZE, CD and MS. Methodological developments may include the synthesis of novel amino acids or the testing of novel supports for chromatography, among others. Mass spectrometry will be used independently to follow native conotoxins through their purification steps carried out at the University of Utah and the Salk Institute. Discovery projects will concentrate on the design of novel analogs of selected toxins using the aminoglycine and norcysteine scaffolds in addition to Ala-scans. This Core, by bringing together the synthetic and analytical expertise of an established group will enable members of this Program Project to reach their respective goals both economically and in a timely fashion. The Program Project Director and the PI of this Core set priorities and communicate regularly. Day to day operations will be coordinated by Drs. J. Rivier and W. Fischer at the Salk Institute and Dr. M. Mclntosh at the University of Utah.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM048677-20
Application #
8380812
Study Section
Special Emphasis Panel (ZRG1-MDCN-G)
Project Start
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
20
Fiscal Year
2012
Total Cost
$227,766
Indirect Cost
Name
University of Utah
Department
Type
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Richter, K; Mathes, V; Fronius, M et al. (2016) Phosphocholine - an agonist of metabotropic but not of ionotropic functions of α9-containing nicotinic acetylcholine receptors. Sci Rep 6:28660
Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L et al. (2016) Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides. Proc Natl Acad Sci U S A 113:3227-32
Green, Brad R; Gajewiak, Joanna; Chhabra, Sandeep et al. (2016) Structural Basis for the Inhibition of Voltage-gated Sodium Channels by Conotoxin μO§-GVIIJ. J Biol Chem 291:7205-20
Hone, Arik J; McIntosh, J Michael; Rueda-Ruzafa, Lola et al. (2016) Therapeutic concentrations of varenicline in the presence of nicotine increase action potential firing in human adrenal chromaffin cells. J Neurochem :
Espino, Samuel S; Dilanyan, Taleen; Imperial, Julita S et al. (2016) Glycine-rich conotoxins from the Virgiconus clade. Toxicon 113:11-7
Zuo, Wanhong; Xiao, Cheng; Gao, Ming et al. (2016) Nicotine regulates activity of lateral habenula neurons via presynaptic and postsynaptic mechanisms. Sci Rep 6:32937
Curtice, Kigen J; Leavitt, Lee S; Chase, Kevin et al. (2016) Classifying neuronal subclasses of the cerebellum through constellation pharmacology. J Neurophysiol 115:1031-42
Yorgason, J T; Rose, J H; McIntosh, J M et al. (2015) Greater ethanol inhibition of presynaptic dopamine release in C57BL/6J than DBA/2J mice: Role of nicotinic acetylcholine receptors. Neuroscience 284:854-64
Lee, Hee-Kyoung; Zhang, Liuyin; Smith, Misty D et al. (2015) A marine analgesic peptide, Contulakin-G, and neurotensin are distinct agonists for neurotensin receptors: uncovering structural determinants of desensitization properties. Front Pharmacol 6:11
Aman, Joseph W; Imperial, Julita S; Ueberheide, Beatrix et al. (2015) Insights into the origins of fish hunting in venomous cone snails from studies of Conus tessulatus. Proc Natl Acad Sci U S A 112:5087-92

Showing the most recent 10 out of 238 publications