The protein tubulin plays a vital role in the life of all eukaryotic cells. Microtubules, made mostly of tubulin, are involved in organelle movement, separation of chromosomes during cell division, maintenance of cell shape and other critical cellular activities. The assembly and disassembly of microtubules at particular times are essential steps in the cell cycle. These processes are closely regulated, and interference with the regulatory mechanisms can lead to cell death. These properties have made tubulin both a fascinating specimen for biophysical studies and a useful target for anti-cancer drugs. It is important to understand how tubulin molecules interact with each other as well as with large number of other proteins and ligands in these activities in order to have a full understanding of the life of the cell, and as a first step in this direction we have determined the structure of tubulin and microtubules by electron crystallography and cryo-EM. In the proposed work we will extend our understanding of the structure and learn more about the processes that give tubulin its unique properties. We will study the interaction of tubulin with drugs that stabilize microtubules and the interactions with some of the proteins that bind to microtubules and that utilize and regulate the microtubule cytoskeleton. This work will lead to a rational understanding of the functional mechanisms of microtubule dynamics and may reveal several distinct underlying mechanism of microtubule stabilization, eventually allowing development of new, more effective drugs targeted to tubulin.

Public Health Relevance

Our structural studies of tubulin and the microtubules it forms are aimed at understanding how proteins and small ligands interact in regulating processes within cells. This information will expand our knowledge of basic cell biology and enhance opportunities to address diseases including cancer and Parkinson's Disease..

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-B)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Lawrence Berkeley National Laboratory
United States
Zip Code
Nogales, Eva; Kellogg, Elizabeth H (2017) Challenges and opportunities in the high-resolution cryo-EM visualization of microtubules and their binding partners. Curr Opin Struct Biol 46:65-70
Hurley, James H; Young, Lindsey N (2017) Mechanisms of Autophagy Initiation. Annu Rev Biochem 86:225-244
Han, Bong-Gyoon; Watson, Zoe; Cate, Jamie H D et al. (2017) Monolayer-crystal streptavidin support films provide an internal standard of cryo-EM image quality. J Struct Biol 200:307-313
Stjepanovic, Goran; Baskaran, Sulochanadevi; Lin, Mary G et al. (2017) Vps34 Kinase Domain Dynamics Regulate the Autophagic PI 3-Kinase Complex. Mol Cell 67:528-534.e3
Kellogg, Elizabeth H; Hejab, Nisreen M A; Howes, Stuart et al. (2017) Insights into the Distinct Mechanisms of Action of Taxane and Non-Taxane Microtubule Stabilizers from Cryo-EM Structures. J Mol Biol 429:633-646
Zhang, Rui; Roostalu, Johanna; Surrey, Thomas et al. (2017) Structural insight into TPX2-stimulated microtubule assembly. Elife 6:
Howes, Stuart C; Geyer, Elisabeth A; LaFrance, Benjamin et al. (2017) Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J Cell Biol 216:2669-2677
Jorgens, Danielle M; Inman, Jamie L; Wojcik, Michal et al. (2017) Deep nuclear invaginations are linked to cytoskeletal filaments - integrated bioimaging of epithelial cells in 3D culture. J Cell Sci 130:177-189
Killilea, Alison N; Csencsits, Roseann; Le, Emily Bao Ngoc Thien et al. (2017) Cytoskeletal organization in microtentacles. Exp Cell Res 357:291-298
Chiu, Wah; Downing, Kenneth H (2017) Editorial overview: Cryo Electron Microscopy: Exciting advances in CryoEM Herald a new era in structural biology. Curr Opin Struct Biol 46:iv-viii

Showing the most recent 10 out of 121 publications