The interdisciplinary team represented herein proposes continued research aimed at understanding the molecular pharmacology of currently used general anesthetics. The team has evolved from simple peptide models in previous cycles of this program to now study natural ligand and voltage-gated ion channels. For example, the nicotinic acetylcholine and GABAA receptor/channel complexes will be studied, in addition to several voltage-gated ion channels, such as KShaw2, Kv1.2 and the bacterial voltage-gated channel, NaChBac. All of the work features rigorous attention to structural and energetic features underlying anesthetic interactions with protein, and now includes a new member focused on electrophysiologic characterization of function. Project 1 continues its focus on the binding event using photolabeling approaches, important new chemical tools and approaches are introduced as aim 1, and aim 2 deploys these approaches to discover anesthetic binding sites in both ligand-gated and voltage-gated ion channels. Project 2 anchors the biochemistry and biophysics to ion channel function through detailed electrophysiologic characterization of the ion channels being studied in the other projects, now including LGICs. Project 3 continues its synthesis of dynamics and structure using NMR spectroscopy in several of the same ion channels explored in the other projects, specifically, examples of ligand-gated channels and NaChBac. Several novel innovations in methodology have allowed better resolution in larger systems. Project 4 takes advantage of spectacular progress in computing resources and code to model the systems studied in the experimental projects, and serve as a hypothesis generating project. Importantly, an ability to independently calculate affinity in multi-site protens is an important innovation in this project. Project 5 represents a fusion of structure and function through cutting edge x-ray and neutron scattering experiments in immobilized, oriented lipid bilayers containing both native and minimally altered natural ion channels. The four experimental projects are supported by a modest administrative core and a protein expression core. This interdisciplinary program group has worked together extremely productively in the past, and now requests continued support to pursue these fundamental directions that will inform future drug improvement and discovery projects.

Public Health Relevance

General anesthetics are administered over 200 million times per year, worldwide, and are still associated with considerable morbidity and mortality. This interdisciplinary program seeks to understand their activity on ion channels and other proteins using cutting edge methods, in order to inform the development of the next generation of drugs. The highly interdependent team is now poised to provide fundamental information on general anesthetic mechanisms in relevant molecular targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
2P01GM055876-14A1
Application #
8415278
Study Section
Special Emphasis Panel (ZGM1-PPBC-5 (AN))
Program Officer
Cole, Alison E
Project Start
1997-06-01
Project End
2018-05-31
Budget Start
2013-09-26
Budget End
2014-05-31
Support Year
14
Fiscal Year
2013
Total Cost
$1,821,524
Indirect Cost
$298,022
Name
University of Pennsylvania
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Kinde, Monica N; Bondarenko, Vasyl; Granata, Daniele et al. (2016) Fluorine-19 NMR and computational quantification of isoflurane binding to the voltage-gated sodium channel NaChBac. Proc Natl Acad Sci U S A 113:13762-13767
Meng, Tao; Bu, Weiming; Ren, Xianfeng et al. (2016) Molecular mechanism of anesthetic-induced depression of myocardial contraction. FASEB J 30:2915-25
Elokely, Khaled; Velisetty, Phanindra; Delemotte, Lucie et al. (2016) Understanding TRPV1 activation by ligands: Insights from the binding modes of capsaicin and resiniferatoxin. Proc Natl Acad Sci U S A 113:E137-45
Granata, Daniele; Carnevale, Vincenzo (2016) Accurate Estimation of the Intrinsic Dimension Using Graph Distances: Unraveling the Geometric Complexity of Datasets. Sci Rep 6:31377
Kinde, Monica N; Bu, Weiming; Chen, Qiang et al. (2016) Common Anesthetic-binding Site for Inhibition of Pentameric Ligand-gated Ion Channels. Anesthesiology 124:664-73
Woll, Kellie A; Murlidaran, Sruthi; Pinch, Benika J et al. (2016) A Novel Bifunctional Alkylphenol Anesthetic Allows Characterization of γ-Aminobutyric Acid, Type A (GABAA), Receptor Subunit Binding Selectivity in Synaptosomes. J Biol Chem 291:20473-86
Woll, Kellie A; Dailey, William P; Brannigan, Grace et al. (2016) Shedding Light on Anesthetic Mechanisms: Application of Photoaffinity Ligands. Anesth Analg 123:1253-1262
Carswell, Casey L; Hénault, Camille M; Murlidaran, Sruthi et al. (2015) Role of the Fourth Transmembrane α Helix in the Allosteric Modulation of Pentameric Ligand-Gated Ion Channels. Structure 23:1655-64
Woll, Kellie A; Weiser, Brian P; Liang, Qiansheng et al. (2015) Role for the propofol hydroxyl in anesthetic protein target molecular recognition. ACS Chem Neurosci 6:927-35
Cournia, Zoe; Allen, Toby W; Andricioaei, Ioan et al. (2015) Membrane Protein Structure, Function, and Dynamics: a Perspective from Experiments and Theory. J Membr Biol 248:611-40

Showing the most recent 10 out of 71 publications