This Program Project on """"""""Structure-Based Antagonism of HlV-1 Envelope Function in Cell Entry"""""""" will lead to a new understanding of the HlV-1 envelope (Env) structure and structural transitions that accompany cell entry, that in turn will permit the development of potent, selective antagonists of HIV-1 entry for both intervention and prevention ofthe AIDS pandemic. The major focus of the Synthetic Thrust (Project 3) within this Program Project will be the development of new small molecule antagonists ofthe CD4-gp120 protein-protein interaction that mediate viral entry into target host cells. The CD4 binding site of gp 120 has great promise as a major therapeutic target site on the Env protein for inhibitor design, given the well-defined binding surface that is highly conserved in diverse virus sub-types. Ligand binding at this site, however, has also evolved to trigger the allosteric activation process that the virus employs to mediate fusion. As we proceed forward, we will build upon our recent discovery of DMJ-ll-121, a small molecule that targets two highly conserved sites of gp 120 and in turn neutralizes HlV-1 without triggering the allosteric response in gpl20. The guidelines developed during the design of DMJ-ll-121 provide a roadmap for the discovery of new small molecule inhibitors ofthe dynamic protein-protein interactions. This roadmap will also be employed to optimize new leads identified by the screening programs within the Program Project. The Synthetic Thrust, in conjunction with the other Projects will also prepare conjugates of the antagonists with molecular probes to study structurally the biochemical mechanisms associated with HlV-1 neutralization. Photoaffinity labels will be attached covalently to highly active antagonists to elucidate the binding sites of inhibitors that entrap the Env in an inactive conformation. The dynamic processes associated with small molecule binding to the HIV-1 Env trimer will also be interrogated with recently developed single molecule FRET probes. Finally, innovative covalent labeling strategies to append a tetrairidium cluster to validated antagonists will facilitate binding site analysis within solubilized Env trimers by SP-cryoEM.

Public Health Relevance

Inhibition of the HIV entry process has been validated as a successful strategy for AIDS chemotherapy. Currently approved inhibitors however are not widely accessible due to production and cost limitations. Recent studies by this Program Project have demonstrated that small molecule viral entry inhibitors targeting well conserved sites of gpl20 can lead to highly selective full antagonists that can neutralize a wide breadth of viral isolates. Efforts to discover and develop new more potent entry inhibitors based on small molecules thus hold the promise of providing clinically relevant therapeutics for both the treatment and prevention of HIV.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
2P01GM056550-17A1
Application #
8603512
Study Section
Special Emphasis Panel (ZRG1-AARR-E (43))
Project Start
Project End
Budget Start
2013-09-30
Budget End
2014-08-31
Support Year
17
Fiscal Year
2013
Total Cost
$310,010
Indirect Cost
$111,810
Name
Drexel University
Department
Type
DUNS #
002604817
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Clarkson, Benjamin R; Schön, Arne; Freire, Ernesto (2016) Conformational stability and self-association equilibrium in biologics. Drug Discov Today 21:342-7
Moraca, Francesca; Acharya, Kriti; Melillo, Bruno et al. (2016) Computational Evaluation of HIV-1 gp120 Conformations of Soluble Trimeric gp140 Structures as Targets for de Novo Docking of First- and Second-Generation Small-Molecule CD4 Mimics. J Chem Inf Model 56:2069-2079
Melillo, Bruno; Liang, Shuaiyi; Park, Jongwoo et al. (2016) Small-Molecule CD4-Mimics: Structure-Based Optimization of HIV-1 Entry Inhibition. ACS Med Chem Lett 7:330-4
Schön, Arne; Freire, Ernesto (2016) Enthalpy screen of drug candidates. Anal Biochem 513:1-6
Pustylnikov, Sergey; Dave, Rajnish S; Khan, Zafar K et al. (2016) Short Communication: Inhibition of DC-SIGN-Mediated HIV-1 Infection by Complementary Actions of Dendritic Cell Receptor Antagonists and Env-Targeting Virus Inactivators. AIDS Res Hum Retroviruses 32:93-100
Lee, Wen Shi; Richard, Jonathan; Lichtfuss, Marit et al. (2016) Antibody-Dependent Cellular Cytotoxicity against Reactivated HIV-1-Infected Cells. J Virol 90:2021-30
Madani, Navid; Princiotto, Amy M; Easterhoff, David et al. (2016) Antibodies Elicited by Multiple Envelope Glycoprotein Immunogens in Primates Neutralize Primary Human Immunodeficiency Viruses (HIV-1) Sensitized by CD4-Mimetic Compounds. J Virol 90:5031-46
Kalyana Sundaram, Ramalingam Venkat; Li, Huiyuan; Bailey, Lauren et al. (2016) Impact of HIV-1 Membrane Cholesterol on Cell-Independent Lytic Inactivation and Cellular Infectivity. Biochemistry 55:447-58
Schön, Arne; Freire, Ernesto (2016) Three easy pieces. Biochim Biophys Acta 1860:975-80
Herschhorn, Alon; Ma, Xiaochu; Gu, Christopher et al. (2016) Release of gp120 Restraints Leads to an Entry-Competent Intermediate State of the HIV-1 Envelope Glycoproteins. MBio 7:

Showing the most recent 10 out of 117 publications