- Core C (Protein Chemistry Core) The Protein Chemistry Core will continue to provide the research groups in the Program Project with the technical expertise and equipment required for the isolation and sequence analysis of receptor fragments containing the sites of photoincorporation by general anesthetics. In addition, the Core provides computational resources for the homology modeling and docking studies that are necessary to interpret the protein chemistry results in terms of models of receptor structure (Projects 1 and 2) and to provide guidance in the design and interpretation of mutational analyses (Project 3) that further assess the structure and function of the identified binding sites. The Core is under the supervision of Dr. Cohen and is located in his laboratory. Major equipment currently available in the Core include (i) an Applied Biosystems 492 Procise automated Protein Sequenator and in-line amino acid analyzer;and (ii) 2 Agilent 1100 HPLCs equipped with UV and fluorescence detectors;and (iii) an Agilent 1100 capillary LC system. The biochemical characterization of anesthetic binding sites in ligand-gated ion channels requires the use of highly specialized techniques not normally available in protein chemistry core facilities which usually do not accept radioactive samples either for Edman degradation or mass spectrometry. The identification of drug binding sites within the hydrophobic domains of integral membrane proteins poses unique problems for peptide isolation and characterization by either Edman degradation or mass spectrometry. It is the function of the Core to provide the appropriate equipment and highly skilled protein chemists who can interact directly with the research projects to develop and carry out the appropriate research strategies and to educate the investigators about the necessary protein chemistry techniques to be carried out either in the Core or in the investigator's lab. In the previous funding period, novel experimental strategies were developed to characterize anesthetic photolabeling of amino acids in each of the transmembrane helices of the a1?3g2 GABAAR, which led to the identification of a second class of GABAAR anesthetic binding sites, and in serotonin 5-HT3 receptors. This Core will now provide similar expertise for the characterization of novel anesthetic binding sites in a1?3g2 and a4?3d GABAARs and GlyRs.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Eaton, Megan M; Germann, Allison L; Arora, Ruby et al. (2016) Multiple Non-Equivalent Interfaces Mediate Direct Activation of GABAA Receptors by Propofol. Curr Neuropharmacol 14:772-80
Zhang, Xi (2016) Instant Integrated Ultradeep Quantitative-structural Membrane Proteomics Discovered Post-translational Modification Signatures for Human Cys-loop Receptor Subunit Bias. Mol Cell Proteomics 15:3665-3684
Forman, Stuart A; Miller, Keith W (2016) Mapping General Anesthetic Sites in Heteromeric γ-Aminobutyric Acid Type A Receptors Reveals a Potential For Targeting Receptor Subtypes. Anesth Analg 123:1263-1273
Chiara, David C; Jounaidi, Youssef; Zhou, Xiaojuan et al. (2016) General Anesthetic Binding Sites in Human α4β3δ γ-Aminobutyric Acid Type A Receptors (GABAARs). J Biol Chem 291:26529-26539
Amlong, Corey A; Perkins, Mark G; Houle, Timothy T et al. (2016) Contrasting Effects of the γ-Aminobutyric Acid Type A Receptor β3 Subunit N265M Mutation on Loss of Righting Reflexes Induced by Etomidate and the Novel Anesthetic Barbiturate R-mTFD-MPAB. Anesth Analg 123:1241-1246
Ziemba, Alexis M; Forman, Stuart A (2016) Correction for Inhibition Leads to an Allosteric Co-Agonist Model for Pentobarbital Modulation and Activation of α1β3γ2L GABAA Receptors. PLoS One 11:e0154031
Nourmahnad, Anahita; Stern, Alex T; Hotta, Mayo et al. (2016) Tryptophan and Cysteine Mutations in M1 Helices of α1β3γ2L γ-Aminobutyric Acid Type A Receptors Indicate Distinct Intersubunit Sites for Four Intravenous Anesthetics and One Orphan Site. Anesthesiology 125:1144-1158
Forman, Stuart A; Chiara, David C; Miller, Keith W (2015) Anesthetics target interfacial transmembrane sites in nicotinic acetylcholine receptors. Neuropharmacology 96:169-77
Hamouda, Ayman K; Wang, Ze-Jun; Stewart, Deirdre S et al. (2015) Desformylflustrabromine (dFBr) and [3H]dFBr-Labeled Binding Sites in a Nicotinic Acetylcholine Receptor. Mol Pharmacol 88:1-11
Liu, K; Jounaidi, Y; Forman, S A et al. (2015) Etomidate uniquely modulates the desensitization of recombinant α1β3δ GABA(A) receptors. Neuroscience 300:307-13

Showing the most recent 10 out of 104 publications