insight into the pathogenesis of human vesico-ureteral reflux, or VUR. In addition, several novel clefting loci were identified which suggest new molecular mechanisms for palatal craniofacial development. Lastly, we identified a novel component of the mammalian RNA processing or P-body that regulates lens formation. These results confirm the power of this approach to establish causality for DGAP candidate genes. In the next grant period, we will extend this functional genomics approach and pursue more in-depth phenotype analyses. Furthermore, targeted mutations in most mouse genes will likely be attained during the next grant period. Therefore, the emphasis of Project 3 will now begin to shift from preparing conventional null alleles for DGAP candidate genes to making use of existing mouse models, preparing conditional alleles where required, and to pursuing more detailed phenotype analyses.
In Aim 1, we will pursue new mouse mutational technology that is higher throughput than conventional gene targeting. Alternatively, in select cases, we will undertake a morpholino knockdown approach in zebrafish.
In Aim 2, we will conduct marker gene experiments, genetic intercrosses and molecular experiments to establish causation, place genes into evolving pathways and identify the relevant developmental mechanisms. The overall goals of Project 3 continue and will be expanded in the future. The successful approach remains to delineate the developmental functions of new genes, and to provide definitive proof that mutations in these human genes produce birth defects.

Public Health Relevance

The Developmental Genome Anatomy Project studies a group of patients underserved by the health care system: those with congenital abnormalities due to chromosome rearrangements. Our mission is to discover genes of importance in human development that are disrupted by these chromosomal rearrangements, genes that are difficult to identify by more traditional human genetic strategies, thereby opening investigation of the disorders that they cause. PROJECT/

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM061354-10
Application #
8460909
Study Section
Special Emphasis Panel (ZRG1-GGG-G)
Project Start
Project End
2015-03-31
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$440,260
Indirect Cost
$134,645
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Wang, Jian; Yu, Tingting; Wang, Zhigang et al. (2016) A New Subtype of Multiple Synostoses Syndrome Is Caused by a Mutation in GDF6 That Decreases Its Sensitivity to Noggin and Enhances Its Potency as a BMP Signal. J Bone Miner Res 31:882-9
Chen, Xiaoli; An, Yu; Gao, Yonghui et al. (2016) Rare Deleterious PARD3 Variants in the aPKC-Binding Region are Implicated in the Pathogenesis of Human Cranial Neural Tube Defects via Disrupting Apical Tight Junction Formation. Hum Mutat :
Tai, Derek J C; Ragavendran, Ashok; Manavalan, Poornima et al. (2016) Engineering microdeletions and microduplications by targeting segmental duplications with CRISPR. Nat Neurosci 19:517-22
Ordulu, Zehra; Kammin, Tammy; Brand, Harrison et al. (2016) Structural Chromosomal Rearrangements Require Nucleotide-Level Resolution: Lessons from Next-Generation Sequencing in Prenatal Diagnosis. Am J Hum Genet 99:1015-1033
Mukherjee, Kusumika; Ishii, Kana; Pillalamarri, Vamsee et al. (2016) Actin capping protein CAPZB regulates cell morphology, differentiation, and neural crest migration in craniofacial morphogenesis†. Hum Mol Genet 25:1255-70
Brand, Harrison; Collins, Ryan L; Hanscom, Carrie et al. (2015) Paired-Duplication Signatures Mark Cryptic Inversions and Other Complex Structural Variation. Am J Hum Genet 97:170-6
Quintero-Rivera, Fabiola; Xi, Qiongchao J; Keppler-Noreuil, Kim M et al. (2015) MATR3 disruption in human and mouse associated with bicuspid aortic valve, aortic coarctation and patent ductus arteriosus. Hum Mol Genet 24:2375-89
Macera, M J; Sobrino, A; Levy, B et al. (2015) Prenatal diagnosis of chromothripsis, with nine breaks characterized by karyotyping, FISH, microarray and whole-genome sequencing. Prenat Diagn 35:299-301
Migliavacca, Eugenia; Golzio, Christelle; Männik, Katrin et al. (2015) A Potential Contributory Role for Ciliary Dysfunction in the 16p11.2 600 kb BP4-BP5 Pathology. Am J Hum Genet 96:784-96
Choi, Jin-Ho; Balasubramanian, Ravikumar; Lee, Phil H et al. (2015) Expanding the Spectrum of Founder Mutations Causing Isolated Gonadotropin-Releasing Hormone Deficiency. J Clin Endocrinol Metab 100:E1378-85

Showing the most recent 10 out of 65 publications