Similar to the powerful endogenous cardioprotective mechanism of ischemic preconditioning, anesthetic-induced preconditioning (APC) has emerged as an equally effective cardioprotective intervention with better risk-to-benefit ratio for the patient. During the current cycle of the Program Project we have identified key elements and mechanisms involved in APC. Central to cardioprotection is the knowledge we have gained regarding the regulation of mitochondrial function by volatile anesthetics. Given the fundamental role of mitochondria in myocardial energetics and oxidative stress, we believe that they are a promising target for protective strategies such as APC. In contrast, disease states resistant to APC (e.g. diabetes) contain fundamental disturbances of mitochondrial function. The central theme of this Program Project is to elucidate the molecular mechanisms underlying APC. Specifically, we hypothesize that attenuation of permeability transition (PT) pore opening after ischemia and reperfusion is central to many of the phenotypic differences observed after exposure to volatile anesthetics. This Program will consist of three interrelated research projects supported by two Cores. Project I (Warltier) will focus on defining the temporal sequence of activation of key cardioprotective proteins related to the regulation of NO? production via HIF1a-VEGF-NO? axis by volatile anesthetics. Disruption of these elements and their effect on sarcKATp channel activity, mitochondrial-derived ROS formation, and tissue and cell injury will be determined. Project II (Bosnjak) will elucidate mechanisms involved in volatile anesthetic-dependent modulation of PT pore opening, a critical end effector of APC. It will address several factors that are critical to the role of the PT pore in APC such as mitochondrial bioenergetics and its proteome and the contribution of sarcKATp channels. Computational models of mitochondrial bioenergetics will be used to test specific hypotheses related to the effects of volatile anesthetics. Project III (Kersten) will investigate mechanisms involved in the attenuation of APC in diabetic animals. It will exploit a novel rat model of type 2 diabetes in which we were able to selectively switch the mitochondrial genome to further dissect the role of mitochondria and eNOS-sensitive pathway during impaired APC. All three Projects will be supported by a Biochemical and Molecular Biology Core (Harder) and a Proteomics Core (Olivier). These Cores will provide state-ofthe- art techniques in gene silencing, real time PCR, mitochondrial proteome, cell cultures, mitochondrial function assays, confocal microscopy and pathology. This Program Project represents a comprehensive effort to leverage our existing infrastructure and programmatic experience in physiology, biophysics, genomics, proteomics, and computational biology to advance our understanding of the cellular and subcellular effects of anesthetics in organ protection. Our findings are likely to have a significant impact in the clinical use of volatile anesthetics.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-PPBC-0 (AN))
Program Officer
Cole, Alison E
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Medical College of Wisconsin
Schools of Medicine
United States
Zip Code
Bosnjak, Zeljko J; Ge, Zhi-Dong (2017) The application of remote ischemic conditioning in cardiac surgery. F1000Res 6:928
Liu, Yanan; Baumgardt, Shelley L; Fang, Juan et al. (2017) Transgenic overexpression of GTP cyclohydrolase 1 in cardiomyocytes ameliorates post-infarction cardiac remodeling. Sci Rep 7:3093
Sedlic, Filip; Muravyeva, Maria Y; Sepac, Ana et al. (2017) Targeted Modification of Mitochondrial ROS Production Converts High Glucose-Induced Cytotoxicity to Cytoprotection: Effects on Anesthetic Preconditioning. J Cell Physiol 232:216-24
Mattson, David L; Liang, Mingyu (2017) Hypertension: From GWAS to functional genomics-based precision medicine. Nat Rev Nephrol 13:195-196
Stowe, David F; Yang, Meiying; Heisner, James S et al. (2017) Endogenous and Agonist-induced Opening of Mitochondrial Big Versus Small Ca2+-sensitive K+ Channels on Cardiac Cell and Mitochondrial Protection. J Cardiovasc Pharmacol 70:314-328
Chuppa, Sandra; Liang, Mingyu; Liu, Pengyuan et al. (2017) MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in Cardiorenal Syndrome Type 4. Kidney Int :
Camara, Amadou K S; Zhou, YiFan; Wen, Po-Chao et al. (2017) Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 8:460
Baker, Maria Angeles; Davis, Seth J; Liu, Pengyuan et al. (2017) Tissue-Specific MicroRNA Expression Patterns in Four Types of Kidney Disease. J Am Soc Nephrol 28:2985-2992
Liu, Yanan; Yan, Yasheng; Inagaki, Yasuyoshi et al. (2017) Insufficient Astrocyte-Derived Brain-Derived Neurotrophic Factor Contributes to Propofol-Induced Neuron Death Through Akt/Glycogen Synthase Kinase 3?/Mitochondrial Fission Pathway. Anesth Analg 125:241-254
Yang, MeiYing; Camara, Amadou K S; Aldakkak, Mohammed et al. (2017) Identity and function of a cardiac mitochondrial small conductance Ca2+-activated K+ channel splice variant. Biochim Biophys Acta 1858:442-458

Showing the most recent 10 out of 124 publications