Similar to the powerful endogenous cardioprotective mechanism of ischemic preconditioning, anesthetic-induced preconditioning (APC) has emerged as an equally effective cardioprotective intervention with better risk-to-benefit ratio for the patient. During the current cycle of the Program Project we have identified key elements and mechanisms involved in APC. Central to cardioprotection is the knowledge we have gained regarding the regulation of mitochondrial function by volatile anesthetics. Given the fundamental role of mitochondria in myocardial energetics and oxidative stress, we believe that they are a promising target for protective strategies such as APC. In contrast, disease states resistant to APC (e.g. diabetes) contain fundamental disturbances of mitochondrial function. The central theme of this Program Project is to elucidate the molecular mechanisms underlying APC. Specifically, we hypothesize that attenuation of permeability transition (PT) pore opening after ischemia and reperfusion is central to many of the phenotypic differences observed after exposure to volatile anesthetics. This Program will consist of three interrelated research projects supported by two Cores. Project I (Warltier) will focus on defining the temporal sequence of activation of key cardioprotective proteins related to the regulation of NO? production via HIF1a-VEGF-NO? axis by volatile anesthetics. Disruption of these elements and their effect on sarcKATp channel activity, mitochondrial-derived ROS formation, and tissue and cell injury will be determined. Project II (Bosnjak) will elucidate mechanisms involved in volatile anesthetic-dependent modulation of PT pore opening, a critical end effector of APC. It will address several factors that are critical to the role of the PT pore in APC such as mitochondrial bioenergetics and its proteome and the contribution of sarcKATp channels. Computational models of mitochondrial bioenergetics will be used to test specific hypotheses related to the effects of volatile anesthetics. Project III (Kersten) will investigate mechanisms involved in the attenuation of APC in diabetic animals. It will exploit a novel rat model of type 2 diabetes in which we were able to selectively switch the mitochondrial genome to further dissect the role of mitochondria and eNOS-sensitive pathway during impaired APC. All three Projects will be supported by a Biochemical and Molecular Biology Core (Harder) and a Proteomics Core (Olivier). These Cores will provide state-ofthe- art techniques in gene silencing, real time PCR, mitochondrial proteome, cell cultures, mitochondrial function assays, confocal microscopy and pathology. This Program Project represents a comprehensive effort to leverage our existing infrastructure and programmatic experience in physiology, biophysics, genomics, proteomics, and computational biology to advance our understanding of the cellular and subcellular effects of anesthetics in organ protection. Our findings are likely to have a significant impact in the clinical use of volatile anesthetics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM066730-09
Application #
8132322
Study Section
Special Emphasis Panel (ZGM1-PPBC-0 (AN))
Program Officer
Cole, Alison E
Project Start
2003-05-05
Project End
2013-07-31
Budget Start
2011-08-01
Budget End
2012-07-31
Support Year
9
Fiscal Year
2011
Total Cost
$1,762,868
Indirect Cost
Name
Medical College of Wisconsin
Department
Anesthesiology
Type
Schools of Medicine
DUNS #
937639060
City
Milwaukee
State
WI
Country
United States
Zip Code
53226
Liu, Yong; Usa, Kristie; Wang, Feng et al. (2018) MicroRNA-214-3p in the Kidney Contributes to the Development of Hypertension. J Am Soc Nephrol 29:2518-2528
Zhang, Xiao; Dash, Ranjan K; Jacobs, Elizabeth R et al. (2018) Integrated computational model of the bioenergetics of isolated lung mitochondria. PLoS One 13:e0197921
Ghanian, Zahra; Konduri, Girija Ganesh; Audi, Said Halim et al. (2018) Quantitative optical measurement of mitochondrial superoxide dynamics in pulmonary artery endothelial cells. J Innov Opt Health Sci 11:
Liang, Mingyu (2018) Epigenetic Mechanisms and Hypertension. Hypertension 72:1244-1254
Pant, Tarun; Dhanasekaran, Anuradha; Fang, Juan et al. (2018) Current status and strategies of long noncoding RNA research for diabetic cardiomyopathy. BMC Cardiovasc Disord 18:197
Ge, Zhi-Dong; Li, Yingchuan; Qiao, Shigang et al. (2018) Failure of Isoflurane Cardiac Preconditioning in Obese Type 2 Diabetic Mice Involves Aberrant Regulation of MicroRNA-21, Endothelial Nitric-oxide Synthase, and Mitochondrial Complex I. Anesthesiology 128:117-129
Williams, Anna Marie; Liu, Yong; Regner, Kevin R et al. (2018) Artificial intelligence, physiological genomics, and precision medicine. Physiol Genomics 50:237-243
Liu, Pengyuan; Liu, Yong; Liu, Han et al. (2018) Role of DNA De Novo (De)Methylation in the Kidney in Salt-Induced Hypertension. Hypertension 72:1160-1171
Chuppa, Sandra; Liang, Mingyu; Liu, Pengyuan et al. (2018) MicroRNA-21 regulates peroxisome proliferator-activated receptor alpha, a molecular mechanism of cardiac pathology in Cardiorenal Syndrome Type 4. Kidney Int 93:375-389
Korman, Ben; Dash, Ranjan K; Peyton, Philip J (2018) Can Mathematical Modeling Explain the Measured Magnitude of the Second Gas Effect? Anesthesiology 128:1075-1083

Showing the most recent 10 out of 134 publications