Previous work in this program project has identified motions that are involved in the catalytic function of enzymes. The hypothesis for our work in this renewal application is that by using theoretical and computational methods we can identify the structural elements that create dynamics related to catalysis on all timescales, and through these means we may create protein dynamics design paradigms for both rate enhancement, and enzyme inhibition. In order to complete this research program we will work on 5 distinct areas that are: 1) we will identify conformational movements necessary on all timescales for reaction. Just as we have followed trajectories and identified protein dynamics that form promoting vibrations and are part of the reaction coordinate, we will extend these calculations to the timescale of enzyme turnover. 2) We will identify structural elements in specific enzyme systems (lactate dehydrogenase and purine nucleoside phosphorylase) that create the specific dynamics. 3) We will identify allosteric binding sites and determine the effect of binding on protein dynamics. 4) We will identify how dynamics is involved in transition state inhibitor binding. 5) we will propose a redesign of """"""""heavy"""""""" PNP that corrects dynamic defects we have previously identified and restores normal catalytic function. The overall thrust to all of the work in this program project has been the identification of dynamics as a central feature in enzyme function from the selection of a catalytically competent conformational substate to rapid promoting vibrations. We now proceed to the next step in this program - identification of dynamics as a design element in enzyme function. We propose to begin the process of developing this concept as a protein engineering tool.

Public Health Relevance

Enzymes perform the chemistry of life. They do so with far greater efficiency and specificity than any non-biological catalyst. One of the great challenges of our day is finding the design principles of enzymes so that we may create synthetic biological catalysts. The work described in this project will advance this goal.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
2P01GM068036-11
Application #
8722196
Study Section
Special Emphasis Panel (ZRG1-VH-F (40))
Project Start
Project End
Budget Start
2014-08-15
Budget End
2015-04-30
Support Year
11
Fiscal Year
2014
Total Cost
$399,513
Indirect Cost
$16,750
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Harijan, Rajesh K; Zoi, Ioanna; Antoniou, Dimitri et al. (2018) Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels. Proc Natl Acad Sci U S A 115:E6209-E6216
Luft, Charles M; Munusamy, Elango; Pemberton, Jeanne E et al. (2018) Molecular Dynamics Simulation of the Oil Sequestration Properties of a Nonionic Rhamnolipid. J Phys Chem B 122:3944-3952
Chen, Xi; Schwartz, Steven D (2018) Directed Evolution as a Probe of Rate Promoting Vibrations Introduced via Mutational Change. Biochemistry 57:3289-3298
Kozlowski, Rachel; Ragupathi, Ashwin; Dyer, R Brian (2018) Characterizing the Surface Coverage of Protein-Gold Nanoparticle Bioconjugates. Bioconjug Chem 29:2691-2700
Brás, Natércia F; Fernandes, Pedro A; Ramos, Maria J et al. (2018) Mechanistic Insights on Human Phosphoglucomutase Revealed by Transition Path Sampling and Molecular Dynamics Calculations. Chemistry 24:1978-1987
Andrews, Brooke A; Dyer, R Brian (2018) Small molecule cores demonstrate non-competitive inhibition of lactate dehydrogenase. Medchemcomm 9:1369-1376
Schramm, Vern L; Schwartz, Steven D (2018) Promoting Vibrations and the Function of Enzymes. Emerging Theoretical and Experimental Convergence. Biochemistry 57:3299-3308
Vaughn, Morgan B; Zhang, Jianyu; Spiro, Thomas G et al. (2018) Activity-Related Microsecond Dynamics Revealed by Temperature-Jump Förster Resonance Energy Transfer Measurements on Thermophilic Alcohol Dehydrogenase. J Am Chem Soc 140:900-903
Khrapunov, Sergei (2018) The Enthalpy-entropy Compensation Phenomenon. Limitations for the Use of Some Basic Thermodynamic Equations. Curr Protein Pept Sci 19:1088-1091
Peng, Huo-Lei; Callender, Robert (2018) Mechanism for Fluorescence Quenching of Tryptophan by Oxamate and Pyruvate: Conjugation and Solvation-Induced Photoinduced Electron Transfer. J Phys Chem B 122:6483-6490

Showing the most recent 10 out of 114 publications