The purpose of the 'Administrative Core'is as follows: (1) provide overall scientific and administrative management of the Program Project;(2) schedule, organize, and run the yearly meeting of the Program Project;(3) schedule travel for PIs/postdocs/students to go from one of the two performance sites to the other in order to conduct research;(4) organize the functions of the External Advisory Committee;and (5) develop, organize, and oversee the web site of the Program Project.

Public Health Relevance

Our studies are aimed at determining the elements of protein structure that create specific dynamics important for catalytic mechanism. We will understand design features that either up or down regulate enzymatic activity. The goal of this research is to lay a foundation for the development and rational design of 'allosteric'effectors or active site inhibitors based on dynamics.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
2P01GM068036-11
Application #
8722197
Study Section
Special Emphasis Panel (ZRG1-VH-F (40))
Project Start
Project End
Budget Start
2014-08-15
Budget End
2015-04-30
Support Year
11
Fiscal Year
2014
Total Cost
$73,764
Indirect Cost
$29,594
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Einarsdóttir, Olöf; McDonald, William; Funatogawa, Chie et al. (2015) The pathway of O?to the active site in heme-copper oxidases. Biochim Biophys Acta 1847:109-18
Reddish, Michael J; Peng, Huo-Lei; Deng, Hua et al. (2014) Direct evidence of catalytic heterogeneity in lactate dehydrogenase by temperature jump infrared spectroscopy. J Phys Chem B 118:10854-62
Kise, Drew P; Magana, Donny; Reddish, Michael J et al. (2014) Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection. Lab Chip 14:584-91
Wang, Zhen; Singh, Priyanka; Czekster, Clarissa M et al. (2014) Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations. J Am Chem Soc 136:8333-41
Peng, Huo-Lei; Deng, Hua; Dyer, R Brian et al. (2014) Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism. Biochemistry 53:1849-57
Masterson, Jean E; Schwartz, Steven D (2014) The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path. Chem Phys 442:132-136
Li, Guifeng; Magana, Donny; Dyer, R Brian (2014) Anisotropic energy flow and allosteric ligand binding in albumin. Nat Commun 5:3100
Schramm, Vern L (2013) Transition States, analogues, and drug development. ACS Chem Biol 8:71-81
Masterson, Jean E; Schwartz, Steven D (2013) Changes in protein architecture and subpicosecond protein dynamics impact the reaction catalyzed by lactate dehydrogenase. J Phys Chem A 117:7107-13
Motley, Matthew W; Schramm, Vern L; Schwartz, Steven D (2013) Conformational freedom in tight binding enzymatic transition-state analogues. J Phys Chem B 117:9591-7

Showing the most recent 10 out of 62 publications