The purpose of the 'Administrative Core'is as follows: (1) provide overall scientific and administrative management of the Program Project;(2) schedule, organize, and run the yearly meeting of the Program Project;(3) schedule travel for PIs/postdocs/students to go from one of the two performance sites to the other in order to conduct research;(4) organize the functions of the External Advisory Committee;and (5) develop, organize, and oversee the web site of the Program Project.

Public Health Relevance

Our studies are aimed at determining the elements of protein structure that create specific dynamics important for catalytic mechanism. We will understand design features that either up or down regulate enzymatic activity. The goal of this research is to lay a foundation for the development and rational design of 'allosteric'effectors or active site inhibitors based on dynamics.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-VH-F (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Albert Einstein College of Medicine
United States
Zip Code
Einarsdóttir, Olöf; McDonald, William; Funatogawa, Chie et al. (2015) The pathway of O?to the active site in heme-copper oxidases. Biochim Biophys Acta 1847:109-18
Reddish, Michael J; Peng, Huo-Lei; Deng, Hua et al. (2014) Direct evidence of catalytic heterogeneity in lactate dehydrogenase by temperature jump infrared spectroscopy. J Phys Chem B 118:10854-62
Kise, Drew P; Magana, Donny; Reddish, Michael J et al. (2014) Submillisecond mixing in a continuous-flow, microfluidic mixer utilizing mid-infrared hyperspectral imaging detection. Lab Chip 14:584-91
Wang, Zhen; Singh, Priyanka; Czekster, Clarissa M et al. (2014) Protein mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations. J Am Chem Soc 136:8333-41
Peng, Huo-Lei; Deng, Hua; Dyer, R Brian et al. (2014) Energy landscape of the Michaelis complex of lactate dehydrogenase: relationship to catalytic mechanism. Biochemistry 53:1849-57
Masterson, Jean E; Schwartz, Steven D (2014) The enzymatic reaction catalyzed by lactate dehydrogenase exhibits one dominant reaction path. Chem Phys 442:132-136
Li, Guifeng; Magana, Donny; Dyer, R Brian (2014) Anisotropic energy flow and allosteric ligand binding in albumin. Nat Commun 5:3100
Schramm, Vern L (2013) Transition States, analogues, and drug development. ACS Chem Biol 8:71-81
Masterson, Jean E; Schwartz, Steven D (2013) Changes in protein architecture and subpicosecond protein dynamics impact the reaction catalyzed by lactate dehydrogenase. J Phys Chem A 117:7107-13
Motley, Matthew W; Schramm, Vern L; Schwartz, Steven D (2013) Conformational freedom in tight binding enzymatic transition-state analogues. J Phys Chem B 117:9591-7

Showing the most recent 10 out of 62 publications