This Program Project applies an extraordinarily broad array of approaches to understand the integrated behavior across time scales and from atomic resolution to whole animals of the nuclear factor kappa B (NF?B) family of transcription factor signaling system. NF?Bs control cellular stress responses, cell growth, survival, and apoptosis. System control is accomplished by interaction a family of inhibitors of kappa B proteins (I?Bs) that sequester NF?B family members in the cytoplasm poised for rapid activation. Experiments and mathematical modeling showed that rapid degradation of free inhibitors achieves low free inhibitor concentrations and robust signal response. Coupled folding and binding of regions of the proteins appears critical for defining degradation rates and binding kinetics. In Overall AIM 1, we will explore how the degradation rate of the canonical inhibitors controls signaling. Folding kinetics by stopped flow and T-jump, theoretical studies on the folding pathways, NMR dynamics, and identification of the """"""""degrons"""""""" will together address this aim. In Overall AIM 2, we will explore ways in which the signaling is under kinetic control. We have discovered that I?B? facilitates dissociation of NF?B from transcription sites (""""""""stripping""""""""). This phenomenon will be analyzed in cells using mutants deficient in """"""""stripping"""""""", the mechanism will be predicted by theoretical studies, the kinetics will be measured by single molecule studies, the structures of ternary complexes will be studied by NMR and the effects of stochasticity on the kinetics of transcription activation will be incorporated. In Overall AIM 3, we will explore the idea that I?Bs stabilize certain NF?B homo and heterodimers affecting the specificity of stimulus response. Certain complexes activate specific genes, yet the molecular mechanism, binding affinities, """"""""foldedness"""""""" of the inhibitors, and roles in cells are still incomplete. Our multiscale, quantitative combination of theory, in vitro biochemical and biophysical characterization, and in vivo studies will enable us to map the landscape by systematic perturbation of the protein interaction dynamics can be quantitatively linked to the emergent biological response.

Public Health Relevance

The nuclear factor kappa B family of transcription factors controls a myriad of cellular functions including growth regulation and thus cancer, the immune response, and development. How the hundreds of different genes are turned on and off specifically is not yet understood. Our combination of theoretical biophysics, experimental approaches and cell biology will provide a deep understanding this important system.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM071862-08
Application #
8627175
Study Section
Special Emphasis Panel (ZRG1-BCMB-D (40))
Program Officer
Wehrle, Janna P
Project Start
2006-04-07
Project End
2017-02-28
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
8
Fiscal Year
2014
Total Cost
$1,753,768
Indirect Cost
$349,456
Name
University of California San Diego
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Ferreiro, Diego U; Komives, Elizabeth A; Wolynes, Peter G (2018) Frustration, function and folding. Curr Opin Struct Biol 48:68-73
Narang, Dominic; Chen, Wei; Ricci, Clarisse G et al. (2018) RelA-Containing NF?B Dimers Have Strikingly Different DNA-Binding Cavities in the Absence of DNA. J Mol Biol 430:1510-1520
Wang, Zhipeng; Potoyan, Davit A; Wolynes, Peter G (2018) Modeling the therapeutic efficacy of NF?B synthetic decoy oligodeoxynucleotides (ODNs). BMC Syst Biol 12:4
Ramsey, Kristen M; Narang, Dominic; Komives, Elizabeth A (2018) Prediction of the presence of a seventh ankyrin repeat in I?B? from homology modeling combined with hydrogen-deuterium exchange mass spectrometry (HDX-MS). Protein Sci 27:1624-1635
Wang, Zhipeng; Potoyan, Davit A; Wolynes, Peter G (2018) Stochastic resonances in a distributed genetic broadcasting system: the NF?B/I?B paradigm. J R Soc Interface 15:
Ramirez-Sarmiento, Cesar A; Komives, Elizabeth A (2018) Hydrogen-deuterium exchange mass spectrometry reveals folding and allostery in protein-protein interactions. Methods 144:43-52
Dembinski, Holly E; Wismer, Kevin; Vargas, Jesse D et al. (2017) Functional importance of stripping in NF?B signaling revealed by a stripping-impaired I?B? mutant. Proc Natl Acad Sci U S A 114:1916-1921
Potoyan, Davit A; Bueno, Carlos; Zheng, Weihua et al. (2017) Resolving the NF?B Heterodimer Binding Paradox: Strain and Frustration Guide the Binding of Dimeric Transcription Factors. J Am Chem Soc 139:18558-18566
Potoyan, Davit A; Wolynes, Peter G (2017) Stochastic dynamics of genetic broadcasting networks. Phys Rev E 96:052305
Ramsey, Kristen M; Dembinski, Holly E; Chen, Wei et al. (2017) DNA and I?B? Both Induce Long-Range Conformational Changes in NF?B. J Mol Biol 429:999-1008

Showing the most recent 10 out of 108 publications