In the previous grant period, our enzymology and synthetic chemistry studies complemented the genetic and biochemical efforts towards understanding the biosynthetic logic of natural product phosphonates. The program project team has made significant progress, developing effective methods to detect new phosphonate biosynthetic gene clusters and understanding in great detail the biosynthetic pathways leading towards commercially important phosphonates such as phosphinothricin and fosfomycin. As the genetic and biochemical studies became more efficient, a new bottleneck was identified that involves inefficient purification strategies and hence slow-down of structure elucidation of the products of newly discovered gene clusters. Part of the proposed studies in this subproject will focus on the development of efficient methods for purification and structural elucidation of those new compounds. In addition, the genome sequencing efforts of the past grant period identified cases in which the same natural product is made in different organisms by very different biosynthetic routes. We will investigate these examples of convergent evolution. Finally, many natural product phosphonates are produced as short peptides to promote uptake by peptide permeases in the target organisms. Whereas for some compounds small non-ribosomal peptide synthetase (NRPS) clusters are responsible for peptide bond formation, many phosphonate containing peptides are assembled In different, often unidentified ways. We will attempt to provide more insight into this very important aspect with respect to possible future engineering efforts.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM077596-08
Application #
8634112
Study Section
Special Emphasis Panel (ZRG1-BCMB-U)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
8
Fiscal Year
2014
Total Cost
$302,274
Indirect Cost
$103,299
Name
University of Illinois Urbana-Champaign
Department
Type
DUNS #
041544081
City
Champaign
State
IL
Country
United States
Zip Code
61820
Peck, Spencer C; van der Donk, Wilfred A (2017) Go it alone: four-electron oxidations by mononuclear non-heme iron enzymes. J Biol Inorg Chem 22:381-394
Olivares, Philip; Ulrich, Emily C; Chekan, Jonathan R et al. (2017) Characterization of Two Late-Stage Enzymes Involved in Fosfomycin Biosynthesis in Pseudomonads. ACS Chem Biol 12:456-463
Born, David A; Ulrich, Emily C; Ju, Kou-San et al. (2017) Structural basis for methylphosphonate biosynthesis. Science 358:1336-1339
Peck, Spencer C; Wang, Chen; Dassama, Laura M K et al. (2017) O-H Activation by an Unexpected Ferryl Intermediate during Catalysis by 2-Hydroxyethylphosphonate Dioxygenase. J Am Chem Soc 139:2045-2052
Zhang, Mingzi M; Qiao, Yuan; Ang, Ee Lui et al. (2017) Using natural products for drug discovery: the impact of the genomics era. Expert Opin Drug Discov 12:475-487
Si, Tong; Li, Bin; Comi, Troy J et al. (2017) Profiling of Microbial Colonies for High-Throughput Engineering of Multistep Enzymatic Reactions via Optically Guided Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. J Am Chem Soc 139:12466-12473
Ren, Hengqian; Hu, Pingfan; Zhao, Huimin (2017) A plug-and-play pathway refactoring workflow for natural product research in Escherichia coli and Saccharomyces cerevisiae. Biotechnol Bioeng 114:1847-1854
Ren, Hengqian; Wang, Bin; Zhao, Huimin (2017) Breaking the silence: new strategies for discovering novel natural products. Curr Opin Biotechnol 48:21-27
Zhang, Mingzi M; Wong, Fong Tian; Wang, Yajie et al. (2017) CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat Chem Biol :
Wendt, Kristen E; Ungerer, Justin; Cobb, Ryan E et al. (2016) CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Microb Cell Fact 15:115

Showing the most recent 10 out of 112 publications