Work in model organisms has revealed that a small number of signal transduction pathways, including the Wnt/b-catenin pathway, play key roles throughout development, as well as in tissue repair and stem cell homeostasis in adults. Interestingly, the composition of the Wnt/b-catenin pathway differs in distinct cellular contexts, depending on expression of unique modifiers of the signaling pathway, or expression of different isoforms of conserved pathway components. We and others have evidence (see Preliminary studies) that Wnt/b-catenin signaling is repressed in pluripotent human embryonic stem cells (hESCs) undergoing selfrenewal, and that signaling is active during differentiation into both early and later mesodermal cell lineages. We hypothesize that context-dependent modifiers of Wnt/b-catenin signaling play key roles in the self-renewal and differentiation of hESCs. The initial goal of this proposal is to test the hypothesis that context-dependent modulators of Wnt/b-catenin signaling play key roles in regulating self-renewal and differentiation in hESCs. We believe that pursuit of this goal will reveal detailed mechanisms by which Wnt/beta-catenin signaling regulates self-renewal and specification of cell fate in hESCs. Our second goal is to expand our investigation of the roles of signal transduction pathways in stem cells to include the Hedgehog, Notch, and TGFb pathways, using novel multiplexed fluorescent reporters to enable simultaneous monitoring of multiple pathways in live cells. We believe that the development of the technology to simultaneously visualize the state of activity of multiple signaling pathways in live cells will have numerous uses in studies of signaling pathways in normal and diseased tissues.

Public Health Relevance

Human embryonic stem cells (hESCs) have the capacity to renew themselves in culture and to differentiate into different cell types, such as heart or nervous system. Wnts are secreted proteins that act as messengers between cells, and which can instruct hESCs to alter whether they self-renew or whether they differentiate. We propose experiments that will provide insights into the mechanisms by which Wnts control self renewal and differentiation of hESCs.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-OBT-A (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
United States
Zip Code
Ware, Carol B; Nelson, Angelique M; Mecham, Brigham et al. (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A 111:4484-9
Murry, Charles E; Chong, James J H; Laflamme, Michael A (2014) Letter by Murry et al regarding article, "Embryonic stem cell-derived cardiac myocytes are not ready for human trials". Circ Res 115:e28-9
Tung, Jason C; Paige, Sharon L; Ratner, Buddy D et al. (2014) Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. Stem Cell Reports 2:271-81
Yang, Xiulan; Rodriguez, Marita; Pabon, Lil et al. (2014) Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 72:296-304
Naumova, Anna V; Modo, Michel; Moore, Anna et al. (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32:804-18
Guan, Xuan; Mack, David L; Moreno, Claudia M et al. (2014) Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery. Stem Cell Res 12:467-80
Mathieu, Julie; Zhou, Wenyu; Xing, Yalan et al. (2014) Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14:592-605
Nguyen-Tran, Diem-Hang; Hait, Nitai C; Sperber, Henrik et al. (2014) Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 7:41-54
Chong, James J H; Yang, Xiulan; Don, Creighton W et al. (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273-7
Jiao, Alex; Trosper, Nicole E; Yang, Hee Seok et al. (2014) Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control. ACS Nano 8:4430-9

Showing the most recent 10 out of 57 publications