Project 1 will investigate the molecular basis of stem cell quiescence using the physiological phenomenon known as diapause as a model. We will also test whether similar molecular events occur in human pluripotent stem cells.
Specific Aim 1 will use a diapause model to characterize stem cell quiescence in vivo, while Specific Aim 2 will characterize stem cell quiescence using novel in vitro models.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
5P01GM081619-07
Application #
8598889
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
Budget End
Support Year
7
Fiscal Year
2014
Total Cost
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
City
Seattle
State
WA
Country
United States
Zip Code
98195
Ware, Carol B; Nelson, Angelique M; Mecham, Brigham et al. (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A 111:4484-9
Murry, Charles E; Chong, James J H; Laflamme, Michael A (2014) Letter by Murry et al regarding article, "Embryonic stem cell-derived cardiac myocytes are not ready for human trials". Circ Res 115:e28-9
Tung, Jason C; Paige, Sharon L; Ratner, Buddy D et al. (2014) Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. Stem Cell Reports 2:271-81
Yang, Xiulan; Rodriguez, Marita; Pabon, Lil et al. (2014) Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 72:296-304
Naumova, Anna V; Modo, Michel; Moore, Anna et al. (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32:804-18
Guan, Xuan; Mack, David L; Moreno, Claudia M et al. (2014) Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery. Stem Cell Res 12:467-80
Mathieu, Julie; Zhou, Wenyu; Xing, Yalan et al. (2014) Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14:592-605
Nguyen-Tran, Diem-Hang; Hait, Nitai C; Sperber, Henrik et al. (2014) Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 7:41-54
Chong, James J H; Yang, Xiulan; Don, Creighton W et al. (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273-7
Jiao, Alex; Trosper, Nicole E; Yang, Hee Seok et al. (2014) Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control. ACS Nano 8:4430-9

Showing the most recent 10 out of 57 publications