This application seeks renewed support for a highly productive collaboration centered on human pluripotent stem cell research. The investigators of this POI represent a highly interactive and collaborative group. Each of the projects interacts extensively with at least two of the other Projects and Cores. Project 1 (Blau) will dissect the molecular basis of stem cell quiescence using novel in vivo and in vitro models. Project 2 (Moon) will characterize context dependent changes in Wnt signaling in human pluripotent stem cells and their differentiated mesodermal and cardiomyocyte progeny (in collaboration with Project 3). In addition. Project 2 is developing a panel of signaling reporter human pluripotent stem cell lines and these lines will prove extremely valuable to Projects 1, 3 and 4 in understanding how signaling differs between distinct pluripotent states and during differentiation. Project 3 (Murry) will test novel candidate regulators of cardiomyocyte differentiation that they identified during the current funding period. Project 4 (Reh) will interat with Projects 1 and 3 on the biology of microRNAs in quiescence and maturation. Our Cores are designed to support the projects in essential aspects of their work. Our Stem Cell Core A (Ware) will work with Projects 1, 3 and 4 to examine whether metabolites can act as drivers of distinct states of pluripotency or to direct differentiation, and will work with Projects 3 and 4 to identif methods for positioning human pluripotent stem cell lines to generate cardiomyocytes or neuroretinal cells. Our Computational Biology Core B (Ruzzo) will provide bioinformatics support for each of the projects as well as for Core A, and will integrate this information with existing genetic and medical datasets. These extensive interactions between the Projects and the Cores assure that the aggregate knowledge to be gained from this Program Project vastly exceeds the sum of its parts.

National Institute of Health (NIH)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Haynes, Susan R
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Washington
Internal Medicine/Medicine
Schools of Medicine
United States
Zip Code
Ware, Carol B; Nelson, Angelique M; Mecham, Brigham et al. (2014) Derivation of naive human embryonic stem cells. Proc Natl Acad Sci U S A 111:4484-9
Murry, Charles E; Chong, James J H; Laflamme, Michael A (2014) Letter by Murry et al regarding article, "Embryonic stem cell-derived cardiac myocytes are not ready for human trials". Circ Res 115:e28-9
Tung, Jason C; Paige, Sharon L; Ratner, Buddy D et al. (2014) Engineered biomaterials control differentiation and proliferation of human-embryonic-stem-cell-derived cardiomyocytes via timed Notch activation. Stem Cell Reports 2:271-81
Yang, Xiulan; Rodriguez, Marita; Pabon, Lil et al. (2014) Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells. J Mol Cell Cardiol 72:296-304
Naumova, Anna V; Modo, Michel; Moore, Anna et al. (2014) Clinical imaging in regenerative medicine. Nat Biotechnol 32:804-18
Guan, Xuan; Mack, David L; Moreno, Claudia M et al. (2014) Dystrophin-deficient cardiomyocytes derived from human urine: new biologic reagents for drug discovery. Stem Cell Res 12:467-80
Mathieu, Julie; Zhou, Wenyu; Xing, Yalan et al. (2014) Hypoxia-inducible factors have distinct and stage-specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell 14:592-605
Nguyen-Tran, Diem-Hang; Hait, Nitai C; Sperber, Henrik et al. (2014) Molecular mechanism of sphingosine-1-phosphate action in Duchenne muscular dystrophy. Dis Model Mech 7:41-54
Chong, James J H; Yang, Xiulan; Don, Creighton W et al. (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510:273-7
Jiao, Alex; Trosper, Nicole E; Yang, Hee Seok et al. (2014) Thermoresponsive nanofabricated substratum for the engineering of three-dimensional tissues with layer-by-layer architectural control. ACS Nano 8:4430-9

Showing the most recent 10 out of 57 publications