The overarching theme of this Program will be to define basic self-renewal mechanisms of hESCs and how they become specified into different lineages. Each of the research projects is complementary but highly synergistic and built on a common biological platform. The Program places a strong emphasis on using the latest hESC culture technology and will be highly interactive with the Southeast scientific community. The 3 Projects will: - address molecular and cellular aspects of early cell fate commitment; - determine how the genome is remodeled during differentiation;- and - apply state of the art technology to characterize glycosylation patterns in hESC and differentiated cells. The 3 Cores will: - function as a resource for the Program and the Southeast by maintaining and distributing hESCs, providing an intensive 2-week Training Program in hESC technology and functioning as a general technical resource; -establish new technologies designed to solve major problems that restrict progress in the hESC area; - provide administrative, logistical support for the Program and act as a conduit for interactions with the Southeast. The Program will significantly accelerate scientific advances made in the hESC area at the University of Georgia and at partnering Institutions in the Southeast. Overall, discoveries made by this team will have a major impact on our understanding of basic hESC biology and human development. All of these discoveries will be critical for the development of strategies where hESCs are to be used in cell therapies for treating degenerative disease and repair of chronic injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM085354-05
Application #
8328740
Study Section
Special Emphasis Panel (ZGM1-GDB-8 (SC))
Program Officer
Haynes, Susan R
Project Start
2008-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2012
Total Cost
$1,686,148
Indirect Cost
$443,124
Name
University of Georgia
Department
None
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Tang, J; Li, Y; Lyon, K et al. (2014) Cancer driver-passenger distinction via sporadic human and dog cancer comparison: a proof-of-principle study with colorectal cancer. Oncogene 33:814-22
Sima, Jiao; Gilbert, David M (2014) Complex correlations: replication timing and mutational landscapes during cancer and genome evolution. Curr Opin Genet Dev 25:93-100
He, Yangqing; Peng, Jiangnan; Hamann, Mark T et al. (2014) An iridoid glucoside and the related aglycones from Cornus florida. J Nat Prod 77:2138-43
Pope, Benjamin D; Ryba, Tyrone; Dileep, Vishnu et al. (2014) Topologically associating domains are stable units of replication-timing regulation. Nature 515:402-5
Boccuto, Luigi; Aoki, Kazuhiro; Flanagan-Steet, Heather et al. (2014) A mutation in a ganglioside biosynthetic enzyme, ST3GAL5, results in salt & pepper syndrome, a neurocutaneous disorder with altered glycolipid and glycoprotein glycosylation. Hum Mol Genet 23:418-33
Kellis, Manolis; Wold, Barbara; Snyder, Michael P et al. (2014) Reply to Brunet and Doolittle: Both selected effect and causal role elements can influence human biology and disease. Proc Natl Acad Sci U S A 111:E3366
Liu, Deli; Xiong, Huan; Ellis, Angela E et al. (2014) Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer. Cancer Res 74:5045-56
Gasimli, Leyla; Hickey, Anne Marie; Yang, Bo et al. (2014) Changes in glycosaminoglycan structure on differentiation of human embryonic stem cells towards mesoderm and endoderm lineages. Biochim Biophys Acta 1840:1993-2003
Lu, Junjie; Li, Hu; Hu, Ming et al. (2014) The distribution of genomic variations in human iPSCs is related to replication-timing reorganization during reprogramming. Cell Rep 7:70-8
Yue, Feng; Cheng, Yong; Breschi, Alessandra et al. (2014) A comparative encyclopedia of DNA elements in the mouse genome. Nature 515:355-64

Showing the most recent 10 out of 38 publications