The overarching theme of this Program will be to define basic self-renewal mechanisms of hESCs and how they become specified into different lineages. Each of the research projects is complementary but highly synergistic and built on a common biological platform. The Program places a strong emphasis on using the latest hESC culture technology and will be highly interactive with the Southeast scientific community. The 3 Projects will: - address molecular and cellular aspects of early cell fate commitment; - determine how the genome is remodeled during differentiation;- and - apply state of the art technology to characterize glycosylation patterns in hESC and differentiated cells. The 3 Cores will: - function as a resource for the Program and the Southeast by maintaining and distributing hESCs, providing an intensive 2-week Training Program in hESC technology and functioning as a general technical resource; -establish new technologies designed to solve major problems that restrict progress in the hESC area; - provide administrative, logistical support for the Program and act as a conduit for interactions with the Southeast. The Program will significantly accelerate scientific advances made in the hESC area at the University of Georgia and at partnering Institutions in the Southeast. Overall, discoveries made by this team will have a major impact on our understanding of basic hESC biology and human development. All of these discoveries will be critical for the development of strategies where hESCs are to be used in cell therapies for treating degenerative disease and repair of chronic injury.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM085354-05
Application #
8328740
Study Section
Special Emphasis Panel (ZGM1-GDB-8 (SC))
Program Officer
Haynes, Susan R
Project Start
2008-08-01
Project End
2014-07-31
Budget Start
2012-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2012
Total Cost
$1,686,148
Indirect Cost
$443,124
Name
University of Georgia
Department
None
Type
Organized Research Units
DUNS #
004315578
City
Athens
State
GA
Country
United States
Zip Code
30602
Boward, Ben; Wu, Tianming; Dalton, Stephen (2016) Concise Review: Control of Cell Fate Through Cell Cycle and Pluripotency Networks. Stem Cells 34:1427-36
Foti, Rossana; Gnan, Stefano; Cornacchia, Daniela et al. (2016) Nuclear Architecture Organized by Rif1 Underpins the Replication-Timing Program. Mol Cell 61:260-73
Li, Ben; Sun, Zhaonan; He, Qing et al. (2016) Bayesian inference with historical data-based informative priors improves detection of differentially expressed genes. Bioinformatics 32:682-9
Rivera-Mulia, Juan Carlos; Gilbert, David M (2016) Replication timing and transcriptional control: beyond cause and effect-part III. Curr Opin Cell Biol 40:168-78
Avery, John; Dalton, Stephen (2016) Methods for Derivation of Multipotent Neural Crest Cells Derived from Human Pluripotent Stem Cells. Methods Mol Biol 1341:197-208
Rivera-Mulia, Juan Carlos; Gilbert, David M (2016) Replicating Large Genomes: Divide and Conquer. Mol Cell 62:756-65
Wilson, Korey A; Elefanty, Andrew G; Stanley, Edouard G et al. (2016) Spatio-temporal re-organization of replication foci accompanies replication domain consolidation during human pluripotent stem cell lineage specification. Cell Cycle 15:2464-75
Singh, Amar M; Trost, Robert; Boward, Benjamin et al. (2016) Utilizing FUCCI reporters to understand pluripotent stem cell biology. Methods 101:4-10
Berger, Ryan P; Sun, Yu Hua; Kulik, Michael et al. (2016) ST8SIA4-Dependent Polysialylation is Part of a Developmental Program Required for Germ Layer Formation from Human Pluripotent Stem Cells. Stem Cells 34:1742-52
Soufi, Abdenour; Dalton, Stephen (2016) Cycling through developmental decisions: how cell cycle dynamics control pluripotency, differentiation and reprogramming. Development 143:4301-4311

Showing the most recent 10 out of 97 publications