Members of the superfamilies of molecular motors, kinesins, dyneins and myosins, are the machines that drive many forms of crucial intracellular transport. The three motor families coordinate their actions with dynamic (and highly regulated) cytoskeletal filaments to control cell growth, define cell shape, deliver and polarize intracellular cargoes, traffic endosomal membranes, and participate in signaling cascades. Many critical cellular processes involve the regulated switching of cargo organelles from one type of cytoskeletal filament to another, but the requisite coordination and competition among multiple motors are not understood. This integrated program project will study the interactions, structure, regulation, and biophysical mechanisms of the molecular motors in growing and functioning cells. The cytoskeletal tracks for intracellular motility, actin and microtubules, the actin-based motors, myosin I, myosin V, and the microtubule-based motors, cytoplasmic dynein and kinesin, will be studied intensively using a battery of state-of-the-art approaches that open exciting research opportunities. Single-molecule fluorescence polarization, nanometer-resolved fluorophore localization, infrared optical traps, rapid biochemical reaction kinetics, genetic manipulations, and novel forms of electron microscopy, correlated with hyper-resolution light microscopy in the same regions, will be applied in collaborative studies to understand the mechanisms of individual molecular motors and their mutual interactions. These approaches yield high temporal and spatial resolution that enables us to dissect mechanisms in assays of increasing molecular complexity that model aspects of the intracellular environment. Particular biological systems, selected for facility of study as well as relevance to broader mechanisms of intracellular motility are endocytosis and vesicle trafficking in neurons and insulin-stimulated fusion of glucose transporter vesicles with the surface membrane in adipocytes. There are close synergies and practical links between all of the sections and cores in this program. We anticipate that the proposed work will take us significantly further toward our goal of understanding motility in the normal and pathological function of cells.

Public Health Relevance

Fundamental research into mechanisms of intracellular motility relate to diseases and developmental deficits including sub-types of Charcot-Marie-Tooth disease, lissencephaly, motor neuron degeneration, Alzheimer's, Huntington's, Amyotrophic Lateral Sclerosis, Kartagener's, and polycystic kidney diseases. Thus the cytoskeleton and molecular motors are increasingly relevant as diagnostic and therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM087253-09
Application #
8242097
Study Section
Special Emphasis Panel (ZRG1-CB-P (40))
Program Officer
Deatherage, James F
Project Start
2004-04-26
Project End
2014-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
9
Fiscal Year
2012
Total Cost
$1,267,410
Indirect Cost
$449,968
Name
University of Pennsylvania
Department
Physiology
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Hendricks, Adam G; Goldman, Yale E; Holzbaur, Erika L F (2014) Reconstituting the motility of isolated intracellular cargoes. Methods Enzymol 540:249-62
Zajac, Allison L; Goldman, Yale E; Holzbaur, Erika L F et al. (2013) Local cytoskeletal and organelle interactions impact molecular-motor- driven early endosomal trafficking. Curr Biol 23:1173-80
Greenberg, Michael J; Ostap, E Michael (2013) Regulation and control of myosin-I by the motor and light chain-binding domains. Trends Cell Biol 23:81-9
Hendricks, Adam G; Lazarus, Jacob E; Perlson, Eran et al. (2012) Dynein tethers and stabilizes dynamic microtubule plus ends. Curr Biol 22:632-7
Wang, Yu-Hsiu; Collins, Agnieszka; Guo, Lin et al. (2012) Divalent cation-induced cluster formation by polyphosphoinositides in model membranes. J Am Chem Soc 134:3387-95
Sun, Yujie; Goldman, Yale E (2011) Lever-arm mechanics of processive myosins. Biophys J 101:1-11
Collins, Agnieszka; Warrington, Anthony; Taylor, Kenneth A et al. (2011) Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol 21:1167-75
Schroeder 3rd, Harry W; Mitchell, Chris; Shuman, Henry et al. (2010) Motor number controls cargo switching at actin-microtubule intersections in vitro. Curr Biol 20:687-96
Arsenault, Mark E; Purohit, Prashant K; Goldman, Yale E et al. (2010) Comparison of Brownian-dynamics-based estimates of polymer tension with direct force measurements. Phys Rev E Stat Nonlin Soft Matter Phys 82:051923
Holzbaur, Erika L F; Goldman, Yale E (2010) Coordination of molecular motors: from in vitro assays to intracellular dynamics. Curr Opin Cell Biol 22:4-13