Core A will provide the overall and day-to-day administration of the Program Project "Molecular Motors in Cell Biology". This includes oversight of the scientific and budgetary aspects of the Program, the provision of administrative services to the Director and Principal Investigators for work directly related to the Program Project, and coordination of the Seminar, Visiting Scientist Programs and the Internal and External Advisory Board Site meetings. Core A will develop and maintain a web site for data sharing within the program and for public asses to data and high resolution images. Core A will administer and facilitate sharing of scientific resources developed within the program.

Public Health Relevance

Fundamental research into mechanisms of intracellular motility relate to diseases and developmental deficits including sub-types of Charcot-Marie-Tooth disease, lissencephaly, motor neuron degeneration, Alzheimer's, Huntington's, Amyotrophic Lateral Sclerosis, Kartagener's, and polycystic kidney diseases. Thus the cytoskeleton and molecular motors are increasingly relevant as diagnostic and therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM087253-09
Application #
8378177
Study Section
Special Emphasis Panel (ZRG1-CB-P)
Project Start
Project End
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
9
Fiscal Year
2012
Total Cost
$50,765
Indirect Cost
$18,532
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Andrecka, J; Takagi, Y; Mickolajczyk, K J et al. (2016) Interferometric Scattering Microscopy for the Study of Molecular Motors. Methods Enzymol 581:517-539
Wilson, Meredith H; Bray, Matthew G; Holzbaur, Erika L F (2016) Methods for Assessing Nuclear Rotation and Nuclear Positioning in Developing Skeletal Muscle Cells. Methods Mol Biol 1411:269-90
Moore, Andrew S; Wong, Yvette C; Simpson, Cory L et al. (2016) Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission-fusion balance within mitochondrial networks. Nat Commun 7:12886
Lippert, Lisa G; Hallock, Jeffrey T; Dadosh, Tali et al. (2016) NeutrAvidin Functionalization of CdSe/CdS Quantum Nanorods and Quantification of Biotin Binding Sites using Biotin-4-Fluorescein Fluorescence Quenching. Bioconjug Chem 27:562-8
Olenick, Mara A; Tokito, Mariko; Boczkowska, Malgorzata et al. (2016) Hook Adaptors Induce Unidirectional Processive Motility by Enhancing the Dynein-Dynactin Interaction. J Biol Chem 291:18239-51
Woody, Michael S; Lewis, John H; Greenberg, Michael J et al. (2016) MEMLET: An Easy-to-Use Tool for Data Fitting and Model Comparison Using Maximum-Likelihood Estimation. Biophys J 111:273-82
McIntosh, Betsy B; Ostap, E Michael (2016) Myosin-I molecular motors at a glance. J Cell Sci 129:2689-95
Wilson, Meredith H; Holzbaur, Erika L F (2015) Nesprins anchor kinesin-1 motors to the nucleus to drive nuclear distribution in muscle cells. Development 142:218-28
Kast, David J; Zajac, Allison L; Holzbaur, Erika L F et al. (2015) WHAMM Directs the Arp2/3 Complex to the ER for Autophagosome Biogenesis through an Actin Comet Tail Mechanism. Curr Biol 25:1791-7
Kast, David J; Dominguez, Roberto (2015) WHAMM links actin assembly via the Arp2/3 complex to autophagy. Autophagy 11:1702-4

Showing the most recent 10 out of 31 publications