As fundamental research in biology increasingly focuses on events occurring at the macromolecular level, structural studies at molecular and supramolecular levels become especially important. Electron microscopy provides high resolution structural information, which exceeds in resolution and a span of applications even most advanced light microscopic approaches. The major limitation of electron microscopy, its applicability only to """"""""dead"""""""" samples, can be partially overcome by correlating the structural organization of a fixed sample with its dynamic behavior recorded prior to fixation using light microscopic approaches. This electron microscopy core unit will supply electron microscopy services for the program including sample preparation and analysis by a variety of electron microscopy techniques. The core will also develop advanced techniques in correlative light and electron microscopy specifically suited for the investigation of molecular motors and vesicle trafficking in cells and in cell-free motility systems. These new techniques will be also made available to the core users.

Public Health Relevance

Electron microscopy is a unique tool to get insight into fine structural organization of tissues, cells, and molecules. Such structural information paves a road toward understanding of complex biological processes, without which it is not possible to fight a disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM087253-10
Application #
8507754
Study Section
Special Emphasis Panel (ZRG1-CB-P)
Project Start
Project End
Budget Start
2013-04-01
Budget End
2014-03-31
Support Year
10
Fiscal Year
2013
Total Cost
$122,080
Indirect Cost
$44,429
Name
University of Pennsylvania
Department
Type
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
McIntosh, Betsy B; Pyrpassopoulos, Serapion; Holzbaur, Erika L F et al. (2018) Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Curr Biol 28:236-248.e5
Moore, Andrew S; Holzbaur, Erika L F (2018) Mitochondrial-cytoskeletal interactions: dynamic associations that facilitate network function and remodeling. Curr Opin Physiol 3:94-100
Woody, Michael S; Capitanio, Marco; Ostap, E Michael et al. (2018) Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. Opt Express 26:11181-11193
Lee, In-Gyun; Olenick, Mara A; Boczkowska, Malgorzata et al. (2018) A conserved interaction of the dynein light intermediate chain with dynein-dynactin effectors necessary for processivity. Nat Commun 9:986
Lippert, Lisa G; Dadosh, Tali; Hadden, Jodi A et al. (2017) Angular measurements of the dynein ring reveal a stepping mechanism dependent on a flexible stalk. Proc Natl Acad Sci U S A 114:E4564-E4573
Pyrpassopoulos, Serapion; Shuman, Henry; Ostap, E Michael (2017) Adhesion force and attachment lifetime of the KIF16B-PX domain interaction with lipid membranes. Mol Biol Cell 28:3315-3322
Lewis, John H; Jamiolkowski, Ryan M; Woody, Michael S et al. (2017) Deconvolution of Camera Instrument Response Functions. Biophys J 112:1214-1220
Greenberg, Michael J; Shuman, Henry; Ostap, E Michael (2017) Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers. Methods Mol Biol 1486:483-509
Hendricks, Adam G; Goldman, Yale E (2017) Measuring Molecular Forces Using Calibrated Optical Tweezers in Living Cells. Methods Mol Biol 1486:537-552
Kast, David J; Dominguez, Roberto (2017) The Cytoskeleton-Autophagy Connection. Curr Biol 27:R318-R326

Showing the most recent 10 out of 42 publications