The fission yeast S. pombe, like S. cerevisiae, has a highly regulated gene expression program for meiosis. However, it appears that a significant portion of the meiotic regulation is not at the transcriptional level, but rather post-transcriptional, at the level of RNA processing. S. pombe has a sophisticated apparatus for RNA processing, including regulation of splicing, and including RNAi. Here, we will focus on these RNA-mediated mechanisms of meiotic regulation, to complement investigations of transcription-factor based regulation in S. cerevisiae. We will provide a detailed characterization of the meiotic transcriptome. We will investigate the inter-related effects of 3'end processing (e.g., cleavage and polyadenylation), RNA turnover, and RNA splicing, and how these processes and the Mmil protein combine to express the early meiotic genes. We will investigate the roles of the anti-sense transcripts found over many of the middle meiotic genes. Finally, in collaboration with Drs. Futcher, Neiman, and Sternglanz we will identify the RNA targets of a number of important meiotic RNA binding proteins in both S. pombe and S. cerevisiae.

Public Health Relevance

This study has relevance to human disease in several aspects. First, mutations affecting splicing are implicated in a majority of human diseases and fission yeast offers one of the two simplest model systems for studies of splicing regulation with arguably greater similarity to human than budding yeast. Second, basic understanding of meiosis is helpful in understanding infertility and birth defects. Finally, the meiotic cycle is a special variation of the vegetative cell cycle and thus will further understanding of carcinogenesis.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CB-Q)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
State University New York Stony Brook
Stony Brook
United States
Zip Code
Jin, Liang; Zhang, Kai; Sternglanz, Rolf et al. (2017) Predicted RNA Binding Proteins Pes4 and Mip6 Regulate mRNA Levels, Translation, and Localization during Sporulation in Budding Yeast. Mol Cell Biol 37:
Mukherjee, Kaustav; Gardin, Justin; Futcher, Bruce et al. (2016) Relative contributions of the structural and catalytic roles of Rrp6 in exosomal degradation of individual mRNAs. RNA 22:1311-9
Jin, Liang; Neiman, Aaron M (2016) Post-transcriptional regulation in budding yeast meiosis. Curr Genet 62:313-5
Chen, Xiangyu; Suhandynata, Ray T; Sandhu, Rima et al. (2015) Phosphorylation of the Synaptonemal Complex Protein Zip1 Regulates the Crossover/Noncrossover Decision during Yeast Meiosis. PLoS Biol 13:e1002329
Garg, Angad; Futcher, Bruce; Leatherwood, Janet (2015) A new transcription factor for mitosis: in Schizosaccharomyces pombe, the RFX transcription factor Sak1 works with forkhead factors to regulate mitotic expression. Nucleic Acids Res 43:6874-88
Lin, Ching-Jung; Smibert, Peter; Zhao, Xiaoyu et al. (2015) An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis. RNA 21:2103-18
Jin, Liang; Zhang, Kai; Xu, Yifeng et al. (2015) Sequestration of mRNAs Modulates the Timing of Translation during Meiosis in Budding Yeast. Mol Cell Biol 35:3448-58
Ucisik-Akkaya, Esma; Leatherwood, Janet K; Neiman, Aaron M (2014) A genome-wide screen for sporulation-defective mutants in Schizosaccharomyces pombe. G3 (Bethesda) 4:1173-82
Berchowitz, Luke E; Gajadhar, Aaron S; van Werven, Folkert J et al. (2013) A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern. Genes Dev 27:2147-63
Lo, Hsiao-Chi; Kunz, Ryan C; Chen, Xiangyu et al. (2012) Cdc7-Dbf4 is a gene-specific regulator of meiotic transcription in yeast. Mol Cell Biol 32:541-57

Showing the most recent 10 out of 18 publications