Promoter Nucleosome Disassembly from a Metazoan Model System A long-standing pursuit in modern biology is to understand how eukaryotic genes, tightly compacted into chromatin, are transformed into highly active transcription units. Due to the complexity of genome packaging and organization, we have a very limited understanding of the molecular mechanisms that control gene expression at the level of chromatin architecture. Central to the transformation of a silenced gene into a highly active transcription unit is the mobilization of nucleosomes. In recent years, a number of studies have established the existence of nucleosome-free regions within the promoters of eukaryotes genes. These regions represent a common "signature" of transcriptionally active genes, where the degree of promoter DNA accessibility may directly correlate with gene activity. Unfortunately, little is known about the molecular steps involved in the formation of these regions, or the relevant proteins. We recently developed a biochemically-defined and biologically relevant model system for studying nucleosome disassembly using a human retroviral (HTLV-I) promoter. In this purely recombinant chromatin system, DNA-bound activators recruit the cellular coactivator p300 to the promoter. Following p300 recruitment, the histones become highly acetylated and the nucleosomes are disassembled from the promoter by the histone chaperone Nap1. Nucleosome disassembly is strictly acetyl-CoA dependent, uncoupled from transcription, and independent of ATP. These observations define a novel role for the acetyltransferase p300 and the histone chaperone Nap1 in the facilitation of acetylation-dependent nucleosome eviction. The Nyborg Project proposes to biochemically characterize nucleosome eviction with respect to histone acetylation, Nap1-mediated disassembly, and the impact of histone HI. Our studies will be enhanced by the highly complementary research proposed by our collaborators in the Luger and Stargell Projects, the efforts of our co-investigator Dr. Jeff Hansen, and the essential expertise and infrastructure provided by the Core facilities. This independent, yet highly interdependent, research effort will advance our understanding of the molecular mechanism underlying eukaryotic gene activation.

Public Health Relevance

This proposal seeks to better understand the step-wise events required for the activation of genes in higher eukaryotes. Inappropriate gene expression is linked to a significant fraction of human disease states, including genetic disorders and cancer.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-GGG-E)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Colorado State University-Fort Collins
Fort Collins
United States
Zip Code
Groocock, Lynda M; Nie, Minghua; Prudden, John et al. (2014) RNF4 interacts with both SUMO and nucleosomes to promote the DNA damage response. EMBO Rep 15:601-8
Muthurajan, Uma M; Hepler, Maggie R D; Hieb, Aaron R et al. (2014) Automodification switches PARP-1 function from chromatin architectural protein to histone chaperone. Proc Natl Acad Sci U S A 111:12752-7
Chodaparambil, Jayanth V; Pate, Kira T; Hepler, Margretta R D et al. (2014) Molecular functions of the TLE tetramerization domain in Wnt target gene repression. EMBO J 33:719-31
Kalashnikova, Anna A; Porter-Goff, Mary E; Muthurajan, Uma M et al. (2013) The role of the nucleosome acidic patch in modulating higher order chromatin structure. J R Soc Interface 10:20121022
Sheinin, Maxim Y; Li, Ming; Soltani, Mohammad et al. (2013) Torque modulates nucleosome stability and facilitates H2A/H2B dimer loss. Nat Commun 4:2579
Rogge, Ryan A; Kalashnikova, Anna A; Muthurajan, Uma M et al. (2013) Assembly of nucleosomal arrays from recombinant core histones and nucleosome positioning DNA. J Vis Exp :
Hsieh, Fu-Kai; Kulaeva, Olga I; Patel, Smita S et al. (2013) Histone chaperone FACT action during transcription through chromatin by RNA polymerase II. Proc Natl Acad Sci U S A 110:7654-9
Kalashnikova, Anna A; Winkler, Duane D; McBryant, Steven J et al. (2013) Linker histone H1.0 interacts with an extensive network of proteins found in the nucleolus. Nucleic Acids Res 41:4026-35
D'Arcy, Sheena; Martin, Kyle W; Panchenko, Tanya et al. (2013) Chaperone Nap1 shields histone surfaces used in a nucleosome and can put H2A-H2B in an unconventional tetrameric form. Mol Cell 51:662-77
Elsasser, Simon J; D'Arcy, Sheena (2012) Towards a mechanism for histone chaperones. Biochim Biophys Acta 1819:211-21

Showing the most recent 10 out of 17 publications