A key characteristic of the specialized pro-resolving mediators (SPM), including the resolvins, protectins and the recently identified maresins, is that all of these molecules tend to exhibit an exquisite structure/function proflle, i.e. the close relationship between their potent, receptor-specific, and specialized biological actions with the stereochemistry and substitution patterns of their molecular structures. Consequently, the complete structural characterization and biological study of these new mediators requires the production of isomerically pure materials of known stereochemistry, that can only be obtained via expert total organic synthesis. In our prior efforts we have developed chemical methodologies and strategies for the preparation of a range of SPM derived from polyunsaturated fatty acids. These SPM are characterized by key stereochemical features, including Z/E double bond geometry and R/S stereochemistry, that requires specialized synthetic approaches. The preparation ofthese often labile molecules in stereochemically pure form is essential for the in-depth investigation of their biological profiles. This Project will investigate and validate the following hypothesis: The most potent, endogenously produced, and biologically relevant SPM are produced in stereocontrolled manner by specialized biosynthetic pathways involving key epoxide intermediates. Moreover, the potent biological pro-resolving actions of the resolvins, protectins and maresins, are stereospecific in nature and are associated with certain stereochemical features ofthese molecules.
The specific aims of this Project are: (1) Establish the complete structure and stereochemistry of new SPM. The stereocontrolled synthesis of selected isomerically pure isomers of new resolvins, maresins, and other newly discovered SPM will be pursued, and their structures and properties will be compared with those of biogenic compounds. (2) Elucidate the biosynthetic oathwavs of new SPM. The detailed biosynthetic pathways ofthe maresins, the resolvins and related SPM, will be investigated by employing a stereocontrolled strategy for the synthesis of likely biosynthetic epoxide intermediates, which will be utilized as biosynthetic precursors. (3) Investigate the stereospecific bioloaical actions of new SPM. In collaboration with the other Projects and Cores, the structural features required forthe potent pro-resolving properties ofthese SPM will be established, leading to new approaches for treating diseases involving inflammation and tissue injury.

Public Health Relevance

The findings and materials generated by the proposed studies in this Project will provide the key molecular information and the required synthetic compounds for establishing the important roles of several new specialized pro-resolving mediators in inflammation-resolution pathways. Ultimately, these studies will also help identify fundamentally new and improved therapeutic approaches for treating a variety of conditions involving inflammation and tissue injury, leading to improvements in patient care and unmet medical needs.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM095467-04
Application #
8641134
Study Section
Special Emphasis Panel (ZGM1-PPBC-3)
Project Start
Project End
Budget Start
2014-04-01
Budget End
2015-03-31
Support Year
4
Fiscal Year
2014
Total Cost
$291,169
Indirect Cost
Name
Brigham and Women's Hospital
Department
Type
DUNS #
030811269
City
Boston
State
MA
Country
United States
Zip Code
02115
Serhan, Charles N; Chiang, Nan; Dalli, Jesmond et al. (2015) Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol 7:a016311
Awji, Elias G; Chand, Hitendra; Bruse, Shannon et al. (2015) Wood smoke enhances cigarette smoke-induced inflammation by inducing the aryl hydrocarbon receptor repressor in airway epithelial cells. Am J Respir Cell Mol Biol 52:377-86
Krishnamoorthy, Nandini; Burkett, Patrick R; Dalli, Jesmond et al. (2015) Cutting edge: maresin-1 engages regulatory T cells to limit type 2 innate lymphoid cell activation and promote resolution of lung inflammation. J Immunol 194:863-7
Wang, Xiuzhe; Zhu, Mingqin; Hjorth, Erik et al. (2015) Resolution of inflammation is altered in Alzheimer's disease. Alzheimers Dement 11:40-50.e1-2
Serhan, Charles N; Dalli, Jesmond; Colas, Romain A et al. (2015) Protectins and maresins: New pro-resolving families of mediators in acute inflammation and resolution bioactive metabolome. Biochim Biophys Acta 1851:397-413
Karra, L; Haworth, O; Priluck, R et al. (2015) Lipoxin B? promotes the resolution of allergic inflammation in the upper and lower airways of mice. Mucosal Immunol 8:852-62
Spite, Matthew; Claria, Joan; Serhan, Charles N (2014) Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab 19:21-36
Abdulnour, Raja-Elie E; Dalli, Jesmond; Colby, Jennifer K et al. (2014) Maresin 1 biosynthesis during platelet-neutrophil interactions is organ-protective. Proc Natl Acad Sci U S A 111:16526-31
Colas, Romain A; Shinohara, Masakazu; Dalli, Jesmond et al. (2014) Identification and signature profiles for pro-resolving and inflammatory lipid mediators in human tissue. Am J Physiol Cell Physiol 307:C39-54
Tang, Huifang; Liu, Yanlan; Yan, Chunguang et al. (2014) Protective actions of aspirin-triggered (17R) resolvin D1 and its analogue, 17R-hydroxy-19-para-fluorophenoxy-resolvin D1 methyl ester, in C5a-dependent IgG immune complex-induced inflammation and lung injury. J Immunol 193:3769-78

Showing the most recent 10 out of 54 publications