The purpose of this Core is to provide bioinformatic analysis of transcriptomic, DNA-protein interactions and Chromatin Conformation Capture projects. Next-generation sequencers have transformed genomic research, yet the analysis of these data remains a bottleneck. Our Core will provide the essential data analysis service to render these data accessible and interpretable to the members of this Program Project. The PI and staff of this Core have extensive experience in the analysis of genomic data, as well as familiarity with the underlying biology of the associated projects. Despite the fact that microarray and sequencing cores exist at UCLA, none of these provide data analysis as a service. Therefore the typical biology group that does not have internal computational expertise is often left with data and no ability to interpret it. The Core we are proposing here will remove this impediment so that all the groups within this Program Project will be able to not only collect sequencing data from their samples, but also obtain processed and analyzed data that can be directly interpreted by researchers without computational expertise. This functionality should render genomics research far more accessible to all members of this Program Project. We will also work with computationally experienced researchers in each lab of this Program to refine analysis tools.
The Aims of this Core are: 1. Analysis of RNA-seq data: we will provide quantification and variant detection analyses of RNA-seq data. 2. Analysis of ChlP-seq data: we will provide the location of peaks, average peak distributions and motifs. 3. Analysis of 4C data: we will provide the locations of domains that interact with """"""""bait"""""""" loci, and analyze their properties with other genomic data. 4. Data display on the UCSC genome browser: in all cases, this core will also load genome-wide data onto our installation of the UCSC genome browser so that users can see at single base resolution the data generated from each sample. We will also upload data and analysis tools to the Wiki site for exchange. 5. Data quality metrics: we will generate quality metrics for sequence data to provide an estimate of the quality of the sample.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM099134-02
Application #
8382278
Study Section
Special Emphasis Panel (ZGM1-GDB-8)
Project Start
2012-08-01
Project End
2016-07-31
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
2
Fiscal Year
2012
Total Cost
$247,482
Indirect Cost
$98,428
Name
University of California Los Angeles
Department
Type
DUNS #
092530369
City
Los Angeles
State
CA
Country
United States
Zip Code
90095
Gaeta, Xavier; Le, Luat; Lin, Ying et al. (2017) Defining Transcriptional Regulatory Mechanisms for Primary let-7 miRNAs. PLoS One 12:e0169237
Famenini, Sam; Rigali, Elizabeth A; Olivera-Perez, Henry M et al. (2017) Increased intermediate M1-M2 macrophage polarization and improved cognition in mild cognitive impairment patients on ?-3 supplementation. FASEB J 31:148-160
Cinkornpumin, J; Roos, M; Nguyen, L et al. (2017) A small molecule screen to identify regulators of let-7 targets. Sci Rep 7:15973
Olivera-Perez, Henry M; Lam, Larry; Dang, Johnny et al. (2017) Omega-3 fatty acids increase the unfolded protein response and improve amyloid-? phagocytosis by macrophages of patients with mild cognitive impairment. FASEB J 31:4359-4369
Chronis, Constantinos; Fiziev, Petko; Papp, Bernadett et al. (2017) Cooperative Binding of Transcription Factors Orchestrates Reprogramming. Cell 168:442-459.e20
Xue, Yong; Pradhan, Suman K; Sun, Fei et al. (2017) Mot1, Ino80C, and NC2 Function Coordinately to Regulate Pervasive Transcription in Yeast and Mammals. Mol Cell 67:594-607.e4
Huang, Chengyang; Su, Trent; Xue, Yong et al. (2017) Cbx3 maintains lineage specificity during neural differentiation. Genes Dev 31:241-246
Patel, Sanjeet; Bonora, Giancarlo; Sahakyan, Anna et al. (2017) Human Embryonic Stem Cells Do Not Change Their X Inactivation Status during Differentiation. Cell Rep 18:54-67
Nih, Lina R; Moshayedi, Pouria; Llorente, Irene L et al. (2017) Engineered HA hydrogel for stem cell transplantation in the brain: Biocompatibility data using a design of experiment approach. Data Brief 10:202-209
Sahakyan, Anna; Kim, Rachel; Chronis, Constantinos et al. (2017) Human Naive Pluripotent Stem Cells Model X Chromosome Dampening and X Inactivation. Cell Stem Cell 20:87-101

Showing the most recent 10 out of 51 publications