This project is about the development of better statistical methods to dissect complex trait variation and to predict outcome from genome-wide marker data. It anticipates that individual risk prediction for disease will become an integral part of Genomic Medicine in the USA and elsewhere. To predict an individual's risk of disease from genetic data it is not necessary to have identified the causal variant or fully understand the biology - all that is needed is a predictor that is correlated with outcome. The statistically best predictor depends on the genetic architecture of the trait: the distribution of effect sizes of causal variants, the distribution of their allele frequency, and the correlation between the two. Therefore, methods to better understand the genetic architecture of complex traits will lead to better statistical prediction methods and the performance of prediction methods will lead to new inference on genetic architecture. We will develop, test and apply statistical genetic methods that utilize whole-genome genotype or sequence data from population based samples that have also been phenotyped for one or more complex traits, estimate locus-specific, chromosome-wide and whole genome matrices of genetic covariance between all pairs of individuals, and estimate variance components associated with these. We will use the results and those from large genomewide association studies to estimate the distribution of SNP and chromosome segment effects by fitting mixture models using an EM-algorithm. We will use simulation models to calibrate the observed distribution of risk allele frequencies for disease with evolutionary models that include the mode of natural selection and pleiotropic relationships in effects on fitness and disease as parameters. We will develop and test Bayesian and non-Bayesian statistical linear mixed models that utilize all available genetic data simultaneously to predict an individual's risk of disease. We will implement prediction methods using data from the Program Grant investigators, from large international research consortia and from data in the public domain, and test their efficiency by correlating outcome with predictors in independent data sets.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM099568-03
Application #
8668091
Study Section
Special Emphasis Panel (ZRG1-GGG-M)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
$145,252
Indirect Cost
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Weir, Bruce S; Goudet, Jérôme (2017) A Unified Characterization of Population Structure and Relatedness. Genetics 206:2085-2103
Brown, Lisa A; Sofer, Tamar; Stilp, Adrienne M et al. (2017) Admixture Mapping Identifies an Amerindian Ancestry Locus Associated with Albuminuria in Hispanics in the United States. J Am Soc Nephrol 28:2211-2220
Chen, Guo-Bo; Lee, Sang Hong; Montgomery, Grant W et al. (2017) Performance of risk prediction for inflammatory bowel disease based on genotyping platform and genomic risk score method. BMC Med Genet 18:94
Pappas, D J; Lizee, A; Paunic, V et al. (2017) Significant variation between SNP-based HLA imputations in diverse populations: the last mile is the hardest. Pharmacogenomics J :
Visscher, Peter M; Wray, Naomi R; Zhang, Qian et al. (2017) 10 Years of GWAS Discovery: Biology, Function, and Translation. Am J Hum Genet 101:5-22
Wang, Bowen; Sverdlov, Serge; Thompson, Elizabeth (2017) Efficient Estimation of Realized Kinship from Single Nucleotide Polymorphism Genotypes. Genetics 205:1063-1078
Marigorta, Urko M; Denson, Lee A; Hyams, Jeffrey S et al. (2017) Transcriptional risk scores link GWAS to eQTLs and predict complications in Crohn's disease. Nat Genet 49:1517-1521
Zeng, Biao; Lloyd-Jones, Luke R; Holloway, Alexander et al. (2017) Constraints on eQTL Fine Mapping in the Presence of Multisite Local Regulation of Gene Expression. G3 (Bethesda) 7:2533-2544
Hodonsky, Chani J; Jain, Deepti; Schick, Ursula M et al. (2017) Genome-wide association study of red blood cell traits in Hispanics/Latinos: The Hispanic Community Health Study/Study of Latinos. PLoS Genet 13:e1006760
Zhan, Xiang; Zhao, Ni; Plantinga, Anna et al. (2017) Powerful Genetic Association Analysis for Common or Rare Variants with High-Dimensional Structured Traits. Genetics 206:1779-1790

Showing the most recent 10 out of 114 publications