The activity of Rho family GTPases is regulated by over 80 GTPase exchange factors (GEFs). Each GTPase is activated by multiple GEFs, each GEF can interact with several different Rho GTPases, and different interactions occur at specific times and places within cells. Hence, deciphering the GTPase signaling programs that control particular cell functions has been a formidable challenge. We conjecture that this can be addressed effectively only by directly observing the coordinated activities of Rho GTPases and their associated regulators in living cells. Building on the biosensor technology developed in Project 1, in this project we will establish techniques to dissect the relationships between multiple GEFs and Rho GTPases;i) by developing the ability to simultaneously observe multiple GEF and Rho GTPase activities in the same living cells;ii) by inhibiting or activating specific network proteins with light while observing others and iii) by computationally integrating the data from multiple experiments that encompass different GEF-GTPase combinations, to generate a quantitative model of the activation hierarchy and kinetics of these signaling networks. As a driving biological problem we will focus on modeling Rho GTPase signaling programs that regulate actin cytoskeleton dynamics and adhesion formation at the protruding edge of cells undergoing directed migration. The same techniques will enable Projects 3 and 4 to investigate signaling programs in the context of collective cell migration and mechanotransduction.
The specific aims for the collaborative work between the Danuser and Hahn labs in this project are: 1) Imaging the activity of GTPases and associated GEF(s) in the same living cell. 2) Implementing time series analysis methods to integrate the data from multiple experiments, each using different combinations of GEF - GTPase pairs, into a consistent model of GEF - GTPase interaction networks. 3) Establishing GEF-GTPase interaction networks in Rac1/Cdc42 signaling programs dunng cell protrusion and retraction events.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM103723-02
Application #
8744290
Study Section
Special Emphasis Panel (ZRG1-IMST-J)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
$278,250
Indirect Cost
$103,250
Name
University of North Carolina Chapel Hill
Department
Type
DUNS #
608195277
City
Chapel Hill
State
NC
Country
United States
Zip Code
27599
Woodham, Emma F; Paul, Nikki R; Tyrrell, Benjamin et al. (2017) Coordination by Cdc42 of Actin, Contractility, and Adhesion for Melanoblast Movement in Mouse Skin. Curr Biol 27:624-637
Takano, Tetsuya; Wu, Mengya; Nakamuta, Shinichi et al. (2017) Discovery of long-range inhibitory signaling to ensure single axon formation. Nat Commun 8:33
Zaritsky, Assaf; Obolski, Uri; Gan, Zhuo et al. (2017) Decoupling global biases and local interactions between cell biological variables. Elife 6:
Zaritsky, Assaf; Tseng, Yun-Yu; Rabadán, M Angeles et al. (2017) Diverse roles of guanine nucleotide exchange factors in regulating collective cell migration. J Cell Biol 216:1543-1556
Taylor, A B; Ioannou, M S; Watanabe, T et al. (2017) Perceptually accurate display of two greyscale images as a single colour image. J Microsc 268:73-83
Herrington, Kari A; Trinh, Andrew L; Dang, Carolyn et al. (2017) Spatial analysis of Cdc42 activity reveals a role for plasma membrane-associated Cdc42 in centrosome regulation. Mol Biol Cell 28:2135-2145
Lawson, Campbell D; Fan, Cheng; Mitin, Natalia et al. (2016) Rho GTPase Transcriptome Analysis Reveals Oncogenic Roles for Rho GTPase-Activating Proteins in Basal-like Breast Cancers. Cancer Res 76:3826-37
Wang, Hui; Vilela, Marco; Winkler, Andreas et al. (2016) LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods 13:755-8
Hodgson, Louis; Spiering, Désirée; Sabouri-Ghomi, Mohsen et al. (2016) FRET binding antenna reports spatiotemporal dynamics of GDI-Cdc42 GTPase interactions. Nat Chem Biol 12:802-809
MacNevin, Christopher J; Toutchkine, Alexei; Marston, Daniel J et al. (2016) Ratiometric Imaging Using a Single Dye Enables Simultaneous Visualization of Rac1 and Cdc42 Activation. J Am Chem Soc 138:2571-5

Showing the most recent 10 out of 24 publications