The use of novel technologies has uncovered many new principles of neuronal function, circuit output and behavior. A major innovation in this grant is the proposal by all investigators to use state-of-the-art technological methods to deliver thermal stimuli and to precisely quantity behavioral and physiological responses. However, these methods are often highly technical and difficult to deploy in biology labs lacking engineering expertise. The overall goal ofthe proposed Behavior and Imaging Core facility is to design and implement hardware and software for highly quantitative measurements of behavior and neuronal activity in response to thermal stimuli. The proposed Core will build upon an existing facility that provides similar services to the Harvard community. This proposal will expand this Core to include participating investigators from Brandeis and Stanford. Expansion of an existing core allows POI grantees to exploit the existing infrastructure and trained personnel, to maximize resources, and minimize duplication of effort.
The specific aims of the proposed Core will be to: 1) Build and support existing devices and software 2) Design and fabricate new solutions for behavior and imaging 3) Optimize existing technologies and make them available as needed.

Public Health Relevance

Precise measurements of neuronal and behavioral responses to temperature will allow for new and unprecedented insights into the mechanisms underlying temperature encoding and compensation. These principles will inform investigations into temperature regulation of physiology in higher animals, and the neurological and behavioral disorders that arise when these processes are altered.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
1P01GM103770-01
Application #
8485971
Study Section
Special Emphasis Panel (ZRG1-CB-P (40))
Project Start
Project End
Budget Start
2013-05-15
Budget End
2014-04-30
Support Year
1
Fiscal Year
2013
Total Cost
$216,834
Indirect Cost
$15,355
Name
Brandeis University
Department
Type
DUNS #
616845814
City
Waltham
State
MA
Country
United States
Zip Code
02454
Luo, Linjiao; Cook, Nathan; Venkatachalam, Vivek et al. (2014) Bidirectional thermotaxis in Caenorhabditis elegans is mediated by distinct sensorimotor strategies driven by the AFD thermosensory neurons. Proc Natl Acad Sci U S A 111:2776-81
Luo, Linjiao; Wen, Quan; Ren, Jing et al. (2014) Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron 82:1115-28