Cancer cells possess two properties which place an extreme burden on the DNA replication and repair machinery: they divide rapidly and are often polyploid. These characteristics may require novel strategies for DNA replication that are not utilized during normal cell division. As an example, the expression of DNA polymerase theta, an error-prone translesion polymerase, is frequently upregulated in cancer cells and this overexpression correlates with excessive chromosomal damage and a negative clinical outcome. We have recently found that Drosophila lacking polymerase theta have abnormal phenotypes and display genome instability in tissues that are characterized by rapid S phases and/or polyploidy, including early stage embryos, follicle cells in the female germline, and histoblasts. In addition, we have identified roles for translesion polymerases in homologous recombination repair These preliminary data establish Drosophila as an excellent system in which to investigate tissue- and cellspecific functions of translesion polymerases and provide an opportunity to test the hypothesis that translesion polymerases play important roles in cells that experience endogenous replication stress. We will utilize a novel lacZ reporter system to assess the frequency and types of mutations that arise during replication and homologous recombination repair when polymerase theta and other translesion polymerases are mutated or overexpressed. In addition, we will collaborate with the Lovett and Freudenreich labs to test whether trinucleotide repeats and sequences that form quasi-palindromes experience heightened instability when located near double-strand breaks or under conditions of endogenous replication stress. Together, these studies will significantly advance our long-term goal to understand how the use and misuse of translesion polymerases contributes to genome instability in cancer cells.

Public Health Relevance

The activity of error-prone, translesion DNA polymerases is carefully regulated to prevent the accumulation of mutations that can lead to the development and progression of cancer. This project will characterize how translesion polymerases are utilized and controlled in a model metazoan during specific periods of development and cell division. Through these studies, we will gain an improved understanding of how dysregulation of translesion polymerases can lead to genomic instability characteristic of cancer cells.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
1P01GM105473-01A1
Application #
8666260
Study Section
Special Emphasis Panel (ZRG1-GGG-Q (40))
Project Start
Project End
Budget Start
2014-05-10
Budget End
2015-04-30
Support Year
1
Fiscal Year
2014
Total Cost
$301,457
Indirect Cost
$15,479
Name
Brandeis University
Department
Type
DUNS #
616845814
City
Waltham
State
MA
Country
United States
Zip Code
02454
Radchenko, Elina A; McGinty, Ryan J; Aksenova, Anna Y et al. (2018) Quantitative Analysis of the Rates for Repeat-Mediated Genome Instability in a Yeast Experimental System. Methods Mol Biol 1672:421-438
Moore, Anthony; Dominska, Margaret; Greenwell, Patricia et al. (2018) Genetic Control of Genomic Alterations Induced in Yeast by Interstitial Telomeric Sequences. Genetics 209:425-438
Lemos, Brenda R; Kaplan, Adam C; Bae, Ji Eun et al. (2018) CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A 115:E2040-E2047
Haber, James E (2018) DNA Repair: The Search for Homology. Bioessays 40:e1700229
Dwivedi, Gajendrahar; Haber, James E (2018) Assaying Mutations Associated With Gene Conversion Repair of a Double-Strand Break. Methods Enzymol 601:145-160
Kononenko, Artem V; Ebersole, Thomas; Vasquez, Karen M et al. (2018) Mechanisms of genetic instability caused by (CGG)n repeats in an experimental mammalian system. Nat Struct Mol Biol 25:669-676
McGinty, Ryan J; Mirkin, Sergei M (2018) Cis- and Trans-Modifiers of Repeat Expansions: Blending Model Systems with Human Genetics. Trends Genet 34:448-465
Polleys, Erica J; Freudenreich, Catherine H (2018) Methods to Study Repeat Fragility and Instability in Saccharomyces cerevisiae. Methods Mol Biol 1672:403-419
Gallagher, Danielle N; Haber, James E (2018) Repair of a Site-Specific DNA Cleavage: Old-School Lessons for Cas9-Mediated Gene Editing. ACS Chem Biol 13:397-405
Polleys, Erica J; House, Nealia C M; Freudenreich, Catherine H (2017) Role of recombination and replication fork restart in repeat instability. DNA Repair (Amst) 56:156-165

Showing the most recent 10 out of 39 publications