The centrosome is the principal nucleator of the microtubule (MT) cytoskeleton, which is required for cell polarity, vesicle trafficking, and spindle formation and function. While the analogous structure in the yeast S. cerevisiae (the spindle pole body or SPB) is morphologically distinct, a conserved set of Y-tubulin complexes is used to nucleate MT assembly. In this Project we focus on the assembly and regulation of the nucleating machinery using a broad combination of structural approaches (x-ray crystallography, cryoEM single particle reconstruction, cryoEM Tomography) to determine the structures of Y-tubulin complexes in vitro and in situ, and to understand their mechanism of action through quantitative in vitro functional studies and innovative kinetic modeling. Previously we discovered that yeast Y-tubulin small complex (YTUSC) can assemble into rings and obtained a 6.5A cryoEM structure of the rings, explaining the origins of MT 13-fold symmetry and discovering unexpected modes of regulation and assembly. Based on our previous results we propose that there are three phases of regulation: Y-TUSC ring assembly restricted to the spindle pole body by requiring interactions with Spcl 10 or Spc72, ring closure to fully match MT symmetry and, activation of the Y-tubulins for efficient nucleation. The proposed experiments expand upon our previous results with the long-term goal of synthesizing an atomic resolution picture of all the relevant structural and functional interactions between aP- and Y-tubulin complexes, regulatory proteins, and how these complexes are linked to the spindle pole body or centrosome matrix. Specifically we will (i) improve the resolution of our cryoEM reconstruction of yeast YTUSC rings and, collaborate with the Bioinformatics Core to generate a complete pseudo-atomic structure. Structures of yTuSC rings bound to MTs or 1 layer of non-polymerizing yeast ap-tubulin will be determined and compared to structures of in situ capped MT minus ends from cryoEM tomography of yeast SPBs. (ii) We will use a newly developed FRET assay to efficiently measure ring assembly in vitro and determine what domains of Spcl 10 and Spc72 are required for assembly and the role of Spcl 10/72 phosphorylation, (iii) While necessary, assembly into rings is insufficient for potent MT nucleation, with a need for both YTUSC closure to match MT symmetry and an allosteric activation. The role of PTMs or other binding partners in this process will be determined.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Research Program Projects (P01)
Project #
5P01GM105537-02
Application #
8917986
Study Section
Special Emphasis Panel (ZRG1-CB-D)
Project Start
Project End
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
2
Fiscal Year
2015
Total Cost
$172,708
Indirect Cost
Name
University of Colorado at Boulder
Department
Type
DUNS #
007431505
City
Boulder
State
CO
Country
United States
Zip Code
80303
Helgeson, Luke A; Zelter, Alex; Riffle, Michael et al. (2018) Human Ska complex and Ndc80 complex interact to form a load-bearing assembly that strengthens kinetochore-microtubule attachments. Proc Natl Acad Sci U S A 115:2740-2745
Fong, Kimberly K; Zelter, Alex; Graczyk, Beth et al. (2018) Novel phosphorylation states of the yeast spindle pole body. Biol Open 7:
Jones, Michele Haltiner; O'Toole, Eileen T; Fabritius, Amy S et al. (2018) Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Mol Biol Cell 29:2280-2291
Jung, Seung-Ryoung; Deng, Yi; Kushmerick, Christopher et al. (2018) Minimizing ATP depletion by oxygen scavengers for single-molecule fluorescence imaging in live cells. Proc Natl Acad Sci U S A 115:E5706-E5715
Webb, Benjamin; Viswanath, Shruthi; Bonomi, Massimiliano et al. (2018) Integrative structure modeling with the Integrative Modeling Platform. Protein Sci 27:245-258
Fernandez, Jose-Jesus; Li, Sam; Bharat, Tanmay A M et al. (2018) Cryo-tomography tilt-series alignment with consideration of the beam-induced sample motion. J Struct Biol 202:200-209
LlaurĂ³, Aida; Hayashi, Hanako; Bailey, Megan E et al. (2018) The kinetoplastid kinetochore protein KKT4 is an unconventional microtubule tip-coupling protein. J Cell Biol 217:3886-3900
Driver, Jonathan W; Geyer, Elisabeth A; Bailey, Megan E et al. (2017) Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips. Elife 6:
Viswanath, Shruthi; Chemmama, Ilan E; Cimermancic, Peter et al. (2017) Assessing Exhaustiveness of Stochastic Sampling for Integrative Modeling of Macromolecular Structures. Biophys J 113:2344-2353
Viswanath, Shruthi; Bonomi, Massimiliano; Kim, Seung Joong et al. (2017) The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Mol Biol Cell 28:3298-3314

Showing the most recent 10 out of 31 publications