The objective of the Genomics, Epigenomics and Proteomics Core (GEP;Core C) is to provide genomics, epigenomics and proteomics/metabolomies support to each of the three projects for the following tissues: placenta (Project I), fetal frontal cortex (Project II) and fetal kidney (Project III). Genomics, epigenomics and targeted epigenetic experiments will be performed in Dr. Cox's laboratory at TBRI. Proteomics and metabolomics analyses will be conducted in Dr. Weintraub's laboratory at UTHSCSA. The technologies necessary to support all three projects are in current use in the Pis'laboratories. Epigenomic, proteomic and metabolomic, network and multidimensional network studies will be conducted using state-of-the-art technologies and software tools. Targeted genomic and epigenomic analyses will be directed by discoveries from network analyses of epigenomic and proteomic datasets and take advantage of established methods in our research groups to begin to understand nutrient-responsive epigenetic mechanisms. This approach will provide information for each Project on transcriptional, post transeriptional and translational regulation in response to maternal nutrient restriction (IVINR) and MNR intervention (INT) compared to control diet (CTR). Core C services will generate data from placenta, fetal frontal cortex and fetal kidney for CTR, MNR and INT diets at 140 and 180 days gestation including: 1) small RNA transcriptome sequence and abundance;2) RNA transcriptome sequence, splice variants, transcription start site (TSS) variants;3) protein identification/abundance;4) metabolite analysis;5) identification of nutrient responsive, coordinated molecular networks;and 6) insight into nutrient responsive epigenetic mechanisms underlying the IUGR phenotype. In addition, the GEP core will organize the large datasets into a database accessible by investigators in the Projects. Bioinformatic approaches including Pathway Analysis will be used to integrate the multiple datasets from the three tissues into high-dimensional networks as a central step in developing a systems analysis of both normal and restricted growth in the developing nonhuman primate fetus.

Public Health Relevance

Reduced fetal nutrient availability results in suboptimal fetal growth and development that increases the risk of lifelong ill health including the predisposition to diabetes and cardiovascular disease. This Program integrates decreased maternal nutrient availability with placental function, fetal nutrient availability and fetal brain and kidney development. Core C will conduct the genomics, epigenomics and proteomics analyses that support the goals of each Project.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DSR-Z (40))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Health Science Center San Antonio
San Antonio
United States
Zip Code
Vega, C C; Reyes-Castro, L A; Bautista, C J et al. (2015) Exercise in obese female rats has beneficial effects on maternal and male and female offspring metabolism. Int J Obes (Lond) 39:712-9
Kavitha, Jovita V; Rosario, Fredrick J; Nijland, Mark J et al. (2014) Down-regulation of placental mTOR, insulin/IGF-I signaling, and nutrient transporters in response to maternal nutrient restriction in the baboon. FASEB J 28:1294-305
Abu Shehab, Majida; Damerill, Ian; Shen, Tong et al. (2014) Liver mTOR controls IGF-I bioavailability by regulation of protein kinase CK2 and IGFBP-1 phosphorylation in fetal growth restriction. Endocrinology 155:1327-39
Tchoukalova, Y D; Krishnapuram, R; White, U A et al. (2014) Fetal baboon sex-specific outcomes in adipocyte differentiation at 0.9 gestation in response to moderate maternal nutrient reduction. Int J Obes (Lond) 38:224-30
Ye, Wenrui; Xie, Lynn; Li, Cun et al. (2014) Impaired development of fetal serotonergic neurons in intrauterine growth restricted baboons. J Med Primatol 43:284-287
Regnault, Timothy R H; Nijland, Mark J; Budge, Helen et al. (2013) Basic experimental and clinical advances in the mechanisms underlying abnormal pregnancy outcomes. J Pregnancy 2013:327638
Brocato, B; Zoerner, A A; Janjetovic, Z et al. (2013) Endocannabinoid crosstalk between placenta and maternal fat in a baboon model (Papio spp.) of obesity. Placenta 34:983-9
Li, Cun; Ramahi, Emma; Nijland, Mark J et al. (2013) Up-regulation of the fetal baboon hypothalamo-pituitary-adrenal axis in intrauterine growth restriction: coincidence with hypothalamic glucocorticoid receptor insensitivity and leptin receptor down-regulation. Endocrinology 154:2365-73
Maloyan, Alina; Muralimanoharan, Sribalasubashini; Huffman, Steven et al. (2013) Identification and comparative analyses of myocardial miRNAs involved in the fetal response to maternal obesity. Physiol Genomics 45:889-900
Li, Cun; McDonald, Thomas J; Wu, Guoyao et al. (2013) Intrauterine growth restriction alters term fetal baboon hypothalamic appetitive peptide balance. J Endocrinol 217:275-82

Showing the most recent 10 out of 221 publications