The objective of the Genomics, Epigenomics and Proteomics Core (GEP; Core C) is to provide genomics, epigenomics and proteomics/metabolomies support to each of the three projects for the following tissues: placenta (Project I), fetal frontal cortex (Project II) and fetal kidney (Project III). Genomics, epigenomics and targeted epigenetic experiments will be performed in Dr. Cox's laboratory at TBRI. Proteomics and metabolomics analyses will be conducted in Dr. Weintraub's laboratory at UTHSCSA. The technologies necessary to support all three projects are in current use in the Pis' laboratories. Epigenomic, proteomic and metabolomic, network and multidimensional network studies will be conducted using state-of-the-art technologies and software tools. Targeted genomic and epigenomic analyses will be directed by discoveries from network analyses of epigenomic and proteomic datasets and take advantage of established methods in our research groups to begin to understand nutrient-responsive epigenetic mechanisms. This approach will provide information for each Project on transcriptional, post transeriptional and translational regulation in response to maternal nutrient restriction (IVINR) and MNR intervention (INT) compared to control diet (CTR). Core C services will generate data from placenta, fetal frontal cortex and fetal kidney for CTR, MNR and INT diets at 140 and 180 days gestation including: 1) small RNA transcriptome sequence and abundance; 2) RNA transcriptome sequence, splice variants, transcription start site (TSS) variants; 3) protein identification/abundance; 4) metabolite analysis; 5) identification of nutrient responsive, coordinated molecular networks; and 6) insight into nutrient responsive epigenetic mechanisms underlying the IUGR phenotype. In addition, the GEP core will organize the large datasets into a database accessible by investigators in the Projects. Bioinformatic approaches including Pathway Analysis will be used to integrate the multiple datasets from the three tissues into high-dimensional networks as a central step in developing a systems analysis of both normal and restricted growth in the developing nonhuman primate fetus.

Public Health Relevance

Reduced fetal nutrient availability results in suboptimal fetal growth and development that increases the risk of lifelong ill health including the predisposition to diabetes and cardiovascular disease. This Program integrates decreased maternal nutrient availability with placental function, fetal nutrient availability and fetal brain and kidney development. Core C will conduct the genomics, epigenomics and proteomics analyses that support the goals of each Project.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD021350-24
Application #
9210110
Study Section
Special Emphasis Panel (ZHD1-DSR-Z)
Project Start
Project End
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
24
Fiscal Year
2017
Total Cost
$344,764
Indirect Cost
$33,292
Name
University of Wyoming
Department
Type
Domestic Higher Education
DUNS #
069690956
City
Laramie
State
WY
Country
United States
Zip Code
82071
Proffitt, J Michael; Glenn, Jeremy; Cesnik, Anthony J et al. (2017) Proteomics in non-human primates: utilizing RNA-Seq data to improve protein identification by mass spectrometry in vervet monkeys. BMC Genomics 18:877
Li, Cun; Jenkins, Susan; Mattern, Vicki et al. (2017) Effect of moderate, 30 percent global maternal nutrient reduction on fetal and postnatal baboon phenotype. J Med Primatol 46:293-303
Kuo, A H; Li, J; Li, C et al. (2017) Prenatal steroid administration leads to adult pericardial and hepatic steatosis in male baboons. Int J Obes (Lond) 41:1299-1302
Muralimanoharan, Sribalasubashini; Li, Cun; Nakayasu, Ernesto S et al. (2017) Sexual dimorphism in the fetal cardiac response to maternal nutrient restriction. J Mol Cell Cardiol 108:181-193
Schlabritz-Loutsevitch, N; Apostolakis-Kyrus, K; Krutilina, R et al. (2016) Pregnancy-driven cardiovascular maternal miR-29 plasticity in obesity. J Med Primatol 45:297-303
Pantham, Priyadarshini; Rosario, Fredrick J; Weintraub, Susan T et al. (2016) Down-Regulation of Placental Transport of Amino Acids Precedes the Development of Intrauterine Growth Restriction in Maternal Nutrient Restricted Baboons. Biol Reprod 95:98
Jansson, Thomas (2016) Placenta plays a critical role in maternal-fetal resource allocation. Proc Natl Acad Sci U S A 113:11066-11068
Dimasuay, Kris Genelyn; Boeuf, Philippe; Powell, Theresa L et al. (2016) Placental Responses to Changes in the Maternal Environment Determine Fetal Growth. Front Physiol 7:12
Schlabritz-Loutsevitch, Natalia; Gygax, Scott E; Dick Jr, Edward et al. (2016) Vaginal Dysbiosis from an Evolutionary Perspective. Sci Rep 6:26817
Schlabritz-Loutsevitch, Natalia E; Comuzzie, Anthony G; Mahaney, Michael M et al. (2016) Serum Vitamin D Concentrations in Baboons (Papio spp.) during Pregnancy and Obesity. Comp Med 66:137-42

Showing the most recent 10 out of 262 publications