Generation of the correct numbers and types of neural cells, including neurons and astrocytes, is fundamental to normal brain development and function. Conversely, alterations in brain cell composition, especially forebrain, are considered substrate of mature mental disorders with developmental origins, such as schizophrenia, depression and autism spectrum disorder. Previously we defined positive and negative extracellular signals, including FGF, IGF1 and PACAP, and intrinsic cell cycle mechanisms that regulate neurogenesis in cerebral cortex. Using this model, we are defining mechanisms by which the neurotherapeutic valproic acid (VPA), routinely administered to women of childbearing age, affects neuro/gliogenesis, because it is a teratogen that causes malformations and contributes to neuropsychiatric disorders. We hypothesize that VPA disrupts normal brain development by differentially regulating generation of neurons and glia, altering BDNF signaling and disturbing subsequent behavioral function. We find that VPA stimulates neurogenesis in culture and in embryos via cell cycle machinery, differentially regulates gliogenesis and alters BDNF signaling.
Our Aims are: 1. Define effects of VPA on prenatal cortical neurogenesis and cell cycle machinery;2. Define VPA effects on proliferation and differentiation of astrocytes;3. Define effects of maternal VPA treatment on behavior of offspring during development and maturity. Studies will examine DNA synthesis, proliferation, differentiation, cell death, cell cycle western/RT- PCR and kinase analyses, cell composition by stereology, in culture and/or in developing pre- and postnatal animals, as well as assessments of exploratory behavior, social and anxiety measures and learning and memory processes. By defining cell type specific effects of VPA on intracellular signaling and cell cycle machinery, and characterizing consequences for brain cell composition and animal behavior during development, we may provide fundamental knowledge to effectively evaluate the benefits and risks of drug therapy, and identify pathways where intervention may counter detrimental effects of drug exposure.

Public Health Relevance

Valproic acid (VPA) is routinely administered to women of childbearing age as therapy for epilepsy, mood disorders and migraine prophylaxis, raising concerns about contributions to developmental brain disorders. By defining effects on intracellular signaling, cell cycle machinery, brain cell composition and behavior, we may provide insights to evaluate VPA risks and benefits and identify pathways to prevent detrimental effects.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
7P01HD023315-26
Application #
8733289
Study Section
Special Emphasis Panel (ZHD1-MCHG-B (DC))
Project Start
2013-07-03
Project End
2014-06-30
Budget Start
2013-07-03
Budget End
2014-06-30
Support Year
26
Fiscal Year
2013
Total Cost
$70,297
Indirect Cost
$25,724
Name
Rbhs-Robert Wood Johnson Medical School
Department
Type
DUNS #
078795875
City
Piscataway
State
NJ
Country
United States
Zip Code
08854
Sheleg, M; Yu, Q; Go, C et al. (2017) Decreased maternal behavior and anxiety in ephrin-A5-/- mice. Genes Brain Behav 16:271-284
Bowling, Heather; Bhattacharya, Aditi; Klann, Eric et al. (2016) Deconstructing brain-derived neurotrophic factor actions in adult brain circuits to bridge an existing informational gap in neuro-cell biology. Neural Regen Res 11:363-7
Huang, Yangyang; Dreyfus, Cheryl F (2016) The role of growth factors as a therapeutic approach to demyelinating disease. Exp Neurol 283:531-40
Lee, Hee Jae; Dreyfus, Cheryl; DiCicco-Bloom, Emanuel (2016) Valproic acid stimulates proliferation of glial precursors during cortical gliogenesis in developing rat. Dev Neurobiol 76:780-98
Bowling, Heather; Bhattacharya, Aditi; Zhang, Guoan et al. (2016) BONLAC: A combinatorial proteomic technique to measure stimulus-induced translational profiles in brain slices. Neuropharmacology 100:76-89
Mony, Tamanna Jahan; Lee, Jae Won; Dreyfus, Cheryl et al. (2016) Valproic Acid Exposure during Early Postnatal Gliogenesis Leads to Autistic-like Behaviors in Rats. Clin Psychopharmacol Neurosci 14:338-344
Das, Gitanjali; Yu, Qili; Hui, Ryan et al. (2016) EphA5 and EphA6: regulation of neuronal and spine morphology. Cell Biosci 6:48
Ma, Qian; Yang, Jianmin; Li, Thomas et al. (2015) Selective reduction of striatal mature BDNF without induction of proBDNF in the zQ175 mouse model of Huntington's disease. Neurobiol Dis 82:466-477
Anastasia, Agustin; Barker, Phillip A; Chao, Moses V et al. (2015) Detection of p75NTR Trimers: Implications for Receptor Stoichiometry and Activation. J Neurosci 35:11911-20
Sheleg, Michal; Yochum, Carrie L; Richardson, Jason R et al. (2015) Ephrin-A5 regulates inter-male aggression in mice. Behav Brain Res 286:300-7

Showing the most recent 10 out of 187 publications