Chronic fetal hypoxia is common in obstetric pathologies, and produces numerous metabolic, endocrine and functional changes in the developing fetus. Among these, vascular remodeling is one ofthe most widely studied, particulariy in the fetal pulmonary and cerebral circulations, as we have demonstrated. Whereas functional consequences of hypoxic vascular remodeling have been examined in detail, the primary mechanisms driving hypoxic vascular remodeling remain unclear and largely unstudied. Based on evidence that Vascular Endothelial Growth Factor (VEGF) is increased by hypoxia, and can exert trophic effects on non-endothelial cells, this proposal explores the hypothesis that the effects of chronic hypoxia on arterial structure and function are mediated via both direct and indirect trophic effects of VEGF on vascular smooth muscle. This main hypothesis gives rise to three corollaries. The first corollary predicts that chronic hypoxia enhances the direct trophic effects of VEGF on vascular smooth muscle.
Specific Aim 1 will use normoxic and hypoxic organ cultures of endothelium-denuded fetal cerebral arteries to determine the direct trophic effects of VEGF on smooth muscle as mediated by either Flk-1 or Flt-1 receptors, PI3-Kinase or MAP-Kinase pathways. The second corollary predicts that chronic hypoxia enhances the ability of VEGF to exert indirect trophic effects on vascular smooth muscle through direct effects on arterial endothelium.
Specific Aim 2 will use normoxic and hypoxic organ cultures of endothelium-intact fetal cerebral arteries to define the role of endothelial release of NO and endothelin-1 in the effects of VEGF on cerebrovascular smooth muscle as defined by the effects ofthe NO donor SNAP, the Protein Kinase G activator 8-pCPTcGMP, the NO synthase inhibitor L-NAME, endothelin-1 and the selective endothelin antagonist BQ-123. The third corollary predicts that chronic hypoxia enhances the ability of VEGF to exert indirect trophic effects on vascular smooth muscle through direct effects on the perivascular sympathetic innervation.
Specific Aim 3 will use normoxic and hypoxic organ cultures of endothelium-intact and endothelium-denuded cerebral arteries from fetuses denervated via superior cervical ganglionectomy at 128 d gestation and harvested 14 days later to determine the direct effects of norepinephrine and neuropeptide-Y. All experiments will analyze responses to VEGF via changes in: 1) contractility via active and passive stress-strain measurements;2) abundances of 6 different contractile proteins (a-actin. Myosin Light Chain Kinase, 20 kDa Myosin Light Chain, SMI myosin, SM2 myosin, and non-muscle myosin) measured via Western blots;and 3) morphometry of the transmural distribution of the 6 contractile proteins using calibrated fluorescent immunohistochemistry. These experiments will enable an unprecedented evaluation ofthe non-angiogenic effects of VEGF and their roles in fetal cerebrovascular remodeling responses to chronic hypoxia

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DSR-A)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Loma Linda University
Loma Linda
United States
Zip Code
Zhu, Ronghui; Huang, Xiaohui; Hu, Xiang-Qun et al. (2014) Gestational hypoxia increases reactive oxygen species and inhibits steroid hormone-mediated upregulation of Ca(2+)-activated K(+) channel function in uterine arteries. Hypertension 64:415-22
Chen, Man; Dasgupta, Chiranjib; Xiong, Fuxia et al. (2014) Epigenetic upregulation of large-conductance Ca2+-activated K+ channel expression in uterine vascular adaptation to pregnancy. Hypertension 64:610-8
Xiao, Daliao; Zhu, Ronghui; Zhang, Lubo (2014) Gestational hypoxia up-regulates protein kinase C and inhibits calcium-activated potassium channels in ovine uterine arteries. Int J Med Sci 11:886-92
Goyal, Ravi; Longo, Lawrence D (2014) Acclimatization to long-term hypoxia: gene expression in ovine carotid arteries. Physiol Genomics 46:725-34
Ma, Qingyi; Xiong, Fuxia; Zhang, Lubo (2014) Gestational hypoxia and epigenetic programming of brain development disorders. Drug Discov Today 19:1883-96
Goyal, Ravi; Goyal, Dipali; Chu, Nina et al. (2014) Cerebral artery alpha-1 AR subtypes: high altitude long-term acclimatization responses. PLoS One 9:e112784
Khorram, Omid; Ghazi, Reza; Chuang, Tsai-Der et al. (2014) Excess maternal glucocorticoids in response to in utero undernutrition inhibit offspring angiogenesis. Reprod Sci 21:601-11
Paradis, Alexandra N; Gay, Maresha S; Zhang, Lubo (2014) Binucleation of cardiomyocytes: the transition from a proliferative to a terminally differentiated state. Drug Discov Today 19:602-9
Ducsay, Charles A; Furuta, Ken; Vargas, Vladimir E et al. (2013) Leptin receptor antagonist treatment ameliorates the effects of long-term maternal hypoxia on adrenal expression of key steroidogenic genes in the ovine fetus. Am J Physiol Regul Integr Comp Physiol 304:R435-42
Zhu, Ronghui; Xiao, DaLiao; Zhang, Lubo (2013) Potassium channels and uterine vascular adaptation to pregnancy and chronic hypoxia. Curr Vasc Pharmacol 11:737-47

Showing the most recent 10 out of 138 publications