The overarching goal of this application is to link social-affective functions to their underlying neurobiological and molecular genetic bases, using Williams syndrome (WS) as a model. The theme leads from the investigators'past studies to the hypothesis that genetic and neuropeptide dysregulation underlies the social-affective features of WS. They continue to employ a multi-pronged approach incorporating new techniques and approaches to understanding the neurogenetic systems involved in the WS social phenotype. To this end, Project I: Gene Networks for Social Cognition, will determine the role of WS genes in social-emotional behavior using individuals with both full and atypical deletions;the role of genetic variations for neurotransmitters and neuropeptides in WS social-emotional behavior;the expression of WS and neuropeptide receptor genes in WS brain;and the genetic transcriptional networks altered in WS. Project II: Modeling WS using Human Neurons, will model typical and affected human nervous system development in WS using pluripotent stem cells. Studies will target genes implicated in social behavior within the WS region. Project III: Cellular Architectonics and Local Circuits, will examine the structures implicated in the "social brain" in WS on a unique collection of WS brains. Project IV: Neuroimaging of Social Circuitry, will utilize new multimodal, integrated structural and functional neuroimaging techniques to test hypotheses about the relationships among brain anatomy, physiology, cognition, and genetics in WS. Project V: Characterization of the Social Phenotype of WS, will characterize three independent key dimensions of altered social-affective behavior WS, including the pathways of several "dissociations", incorporating new technologies and probes for behavior, psychophysiology, and electrophysiology. Genetic concepts have been used to map out the program project, and will be integrated at the level of the organism (Projects IV and V), brain/gene expression (Project III), and cell (Project II), to parse genes and transcriptional networks underlying social behavior. Results have the potential to move our understanding forward in unprecedented ways, providing a critical contribution to Social Neuroscience.

Public Health Relevance

A mission of NICHD includes research that leads to increased understanding and treatment of social behavior and emotional disorders. The investigators propose research that targets the study of genes, neural circuits, and social behavior in new and innovative ways, the results of the studies will provide unprecedented integration of the genetic and brain processes responsible for human social behavior, and key to novel treatments.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD033113-15
Application #
8235970
Study Section
Special Emphasis Panel (ZHD1-MRG-C (BU))
Program Officer
Oster-Granite, Mary Lou
Project Start
1997-03-01
Project End
2016-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
15
Fiscal Year
2012
Total Cost
$1,504,334
Indirect Cost
$354,766
Name
Salk Institute for Biological Studies
Department
Type
DUNS #
078731668
City
La Jolla
State
CA
Country
United States
Zip Code
92037
Herai, Roberto R; Stefanacci, Lisa; Hrvoj-Mihic, Branka et al. (2014) Micro RNA detection in long-term fixed tissue of cortical glutamatergic pyramidal neurons after targeted laser-capture neuroanatomical microdissection. J Neurosci Methods 235:76-82
Hoeft, Fumiko; Dai, Li; Haas, Brian W et al. (2014) Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome. PLoS One 9:e104088
Freitas, Beatriz C G; Trujillo, Cleber A; Carromeu, Cassiano et al. (2014) Stem cells and modeling of autism spectrum disorders. Exp Neurol 260:33-43
Hanson, Kari L; Hrvoj-Mihic, Branka; Semendeferi, Katerina (2014) A dual comparative approach: integrating lines of evidence from human evolutionary neuroanatomy and neurodevelopmental disorders. Brain Behav Evol 84:135-55
Ng, Rowena; Järvinen, Anna; Bellugi, Ursula (2014) Toward a deeper characterization of the social phenotype of Williams syndrome: The association between personality and social drive. Res Dev Disabil 35:1838-49
Ng, Rowena; Lai, Philip; Levitin, Daniel J et al. (2013) Musicality Correlates With Sociability and Emotionality in Williams Syndrome. J Ment Health Res Intellect Disabil 6:268-279
Mills, D L; Dai, L; Fishman, I et al. (2013) Genetic mapping of brain plasticity across development in Williams syndrome: ERP markers of face and language processing. Dev Neuropsychol 38:613-42
Teffer, Kate; Semendeferi, Katerina (2012) Human prefrontal cortex: evolution, development, and pathology. Prog Brain Res 195:191-218
Fishman, Inna; Ng, Rowena; Bellugi, Ursula (2012) Neural processing of race by individuals with Williams syndrome: do they show the other-race effect? (And why it matters). Soc Neurosci 7:373-84
Haas, B W; Hoeft, F; Barnea-Goraly, N et al. (2012) Preliminary evidence of abnormal white matter related to the fusiform gyrus in Williams syndrome: a diffusion tensor imaging tractography study. Genes Brain Behav 11:62-8

Showing the most recent 10 out of 74 publications