Multiple abnormalities have been identified by our group in the serotonergic system in the medulla of SIDS cases. These data are exciting and compelling in light of a large body of experimental data from our group and others that indicate that serotonin (5-HT) neurons are involved in maintaining cardiovascular and respiratory homeostasis and in regulating sleep and arousal. There is strong evidence in particular that 5-HT neurons contribute to the ventilatory and arousal response to hypercapnia, as well as the response to temperature challenges. Thus, a defect in 5-HT neurons fits well with long-standing theories of SIDS proposing that there are defects in cardiorespiratory control, arousal and thermoregulation. Preliminary data from our group also indicate that there are defects in the GABA system in SIDS cases. This is intriguing, because there is a subset of GABA neurons within the raphe nuclei that may also be central chemoreceptors. The work proposed in this project will use in vitro approaches to address cellular and network mechanisms involved in 5-HT and GABA function. We will use state-of-the art in vitro electrophysiological methods to examine the effects of CO2/pH, O2, temperature, gender and nicotine on 5-HT and GABA neurons during development in medullary slices from genetically engineered mice in which all or subsets of serotonin or GABA neurons are fluorescent. With the Neuroanatomy Core, we will also use immunohistochemistry and tract tracing to define the neurochemical organization and connectivity of the medullary 5-HT system relative to the GABA system and the respiratory network. The goal is to use an in vitro approach to provide insight into how a defect in 5-HT and GABA neurons impairs the response of an infant to hypercarbia, hypoxia and/or a temperature challenge, why this defect is expressed only during a critical developmental period, how gender and prenatal exposure to nicotine modifies it, and why death typically occurs during sleep. To accomplish this, we propose the following aims: 1) Define the properties of GABA neurons in the medullary raphe. 2) Characterize how hypoxia, temperature, prenatal nicotine, gender and pH interact to affect different subsets of 5-HT neurons in the medulla at different postnatal ages. 3) Define how network interactions between the raphe, ventrolateral medulla, retrotrapezoid nucleus and pre-B6tzinger Complex influence the response to pH and neuromodulators. The cellular and network experiments proposed here are interdigitated with those in the other Projects of this PPG, and are an intermediate step between the molecular approach of Project 5 and the human and whole animal work of Projects 1-3. Together our results will provide critical insight, we believe, into how a defect in the 5 HT system could lead to SIDS.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD036379-15
Application #
8376688
Study Section
Special Emphasis Panel (ZHD1-MCHG-B)
Project Start
Project End
2013-09-23
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
15
Fiscal Year
2012
Total Cost
$327,104
Indirect Cost
$23,191
Name
Children's Hospital Boston
Department
Type
DUNS #
076593722
City
Boston
State
MA
Country
United States
Zip Code
02115
Edlow, Brian L; McNab, Jennifer A; Witzel, Thomas et al. (2016) The Structural Connectome of the Human Central Homeostatic Network. Brain Connect 6:187-200
Hefti, Marco M; Kinney, Hannah C; Cryan, Jane B et al. (2016) Sudden unexpected death in early childhood: general observations in a series of 151 cases: Part 1 of the investigations of the San Diego SUDC Research Project. Forensic Sci Med Pathol 12:4-13
Commons, Kathryn G (2016) Ascending serotonin neuron diversity under two umbrellas. Brain Struct Funct 221:3347-60
Goodstein, M H; Hauck, F R; Darnall, R A et al. (2016) Swaddling is not contraindicated in the newborn period. J Perinatol 36:160
Barrett, Karlene T; Dosumu-Johnson, Ryan T; Daubenspeck, J Andrew et al. (2016) Partial Raphe Dysfunction in Neurotransmission Is Sufficient to Increase Mortality after Anoxic Exposures in Mice at a Critical Period in Postnatal Development. J Neurosci 36:3943-53
Richerson, George B; Boison, Detlev; Faingold, Carl L et al. (2016) From unwitnessed fatality to witnessed rescue: Pharmacologic intervention in sudden unexpected death in epilepsy. Epilepsia 57 Suppl 1:35-45
Cerpa, Veronica J; Wu, Yuanming; Bravo, Eduardo et al. (2016) Medullary 5-HT neurons: Switch from tonic respiratory drive to chemoreception during postnatal development. Neuroscience :
Darnall, Robert A; Schneider, Robert W; Tobia, Christine M et al. (2016) Eliminating medullary 5-HT neurons delays arousal and decreases the respiratory response to repeated episodes of hypoxia in neonatal rat pups. J Appl Physiol (1985) 120:514-25
Goldstein, Richard D; Trachtenberg, Felicia L; Sens, Mary Ann et al. (2016) Overall Postneonatal Mortality and Rates of SIDS. Pediatrics 137:
Hefti, Marco M; Cryan, Jane B; Haas, Elisabeth A et al. (2016) Hippocampal malformation associated with sudden death in early childhood: a neuropathologic study: Part 2 of the investigations of The San Diego SUDC Research Project. Forensic Sci Med Pathol 12:14-25

Showing the most recent 10 out of 125 publications