By adapting approaches that have been applied with great success to testing the sea urchin developmental gene regulatory network, we propose to perform a detailed analysis of the gene interactions involved in specifying vertebrate neural crest cells.
Our aim i s to understand the genomic control of this process at a systems level by revealing most/all of the inputs into the system and methodically functionally perturbing them to examine interactions amongst players. In other words, we propose to test a putative neural crest gene regulatory network (NC-GRN) at a systems levels in a single vertebrate. These efforts will be greatly facilitated by the advent of new, high speed technologies that will significantly increase the rate of data acquisition and interpretation as well as novel bioinformatics tools to interrogate genomic information. We will draw heavily on methodologies and concepts developed in the Davidson lab. The goal is to apply these to a vertebrate system at moderate to high throughput. This represents a huge leap forward in both the scale and depth of what can be tested. The recent availability of the chick genome affords a rich tool for discovery of genes and regulatory regions. In addition as an amniote, chick development is similar to humans and, unlike mammals, is accessible to imaging at early stages since the embryo develops outside the mother. We will test linkages in the chick neural crest gene regulatory network, identify regulatory elements and test direct interactions.
Aim 1 : Examine effects of loss-of-function of known neural plate border and neural crest specifiers. By introducing morpholino antisense oligonucleotides into the prospective neural plate border or closing neural tube. Effects on potential downstream targets will be examined by in situ hybridization and QPCR.
Aim 2 : Test the function of newly identified transcription factors in the NC-GRN We will test the role and position additional transcription factors in the network and we will continue to attempt to identify transcription factors that feed into the NC-GRN.
Aim 3 : Isolate regulatory regions of neural crest specifer and downstream targets. We will isolate putative regulatory regions of neural crest specifier genes, initially for Sox 10 and then other specifiers, via comparative sequence analysis. Candidate regions will be electroporated into early chick embryos to identify neural crest regulatory elements.
Aim 4 : Establish direct relationships within the network by identification of transcription factor binding sites within regulatory regions of downstream genes. We will interrogate the regulatory regions of neural crest enhancer elements for critical sequences responsible for binding of neural plate border specifiers genes and/or neural crest specifier genes. We will assay for direct binding interactions within the network using chromatin immunoprecipitation assay, electrophoretic mobility shift assays and mutational analysis.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD037105-15
Application #
8471143
Study Section
Special Emphasis Panel (ZHD1-DSR-Z)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
15
Fiscal Year
2013
Total Cost
$276,437
Indirect Cost
$98,982
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Lyons, Deirdre C; Martik, Megan L; Saunders, Lindsay R et al. (2014) Specification to biomineralization: following a single cell type as it constructs a skeleton. Integr Comp Biol 54:723-33
Tu, Qiang; Cameron, R Andrew; Davidson, Eric H (2014) Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev Biol 385:160-7
Warner, Jacob F; McCarthy, Ali M; Morris, Robert L et al. (2014) Hedgehog signaling requires motile cilia in the sea urchin. Mol Biol Evol 31:18-22
Warner, Jacob F; McClay, David R (2014) Perturbations to the hedgehog pathway in sea urchin embryos. Methods Mol Biol 1128:211-21
Kerosuo, Laura; Bronner, Marianne E (2014) Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube. Mol Biol Cell 25:347-55
Hochgreb-Hägele, Tatiana; Koo, Daniel E S; Das, Neha M et al. (2014) Zebrafish stem/progenitor factor msi2b exhibits two phases of activity mediated by different splice variants. Stem Cells 32:558-71
Cheng, Xianrui; Lyons, Deirdre C; Socolar, Joshua E S et al. (2014) Delayed transition to new cell fates during cellular reprogramming. Dev Biol 391:147-57
Kwon, Seung-Hae; Park, Ok Kyu; Nie, Shuyi et al. (2014) Bioinformatic analysis of nematode migration-associated genes identifies novel vertebrate neural crest markers. PLoS One 9:e103024
Simões-Costa, Marcos; Tan-Cabugao, Joanne; Antoshechkin, Igor et al. (2014) Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Res 24:281-90
Betancur, Paola; Simões-Costa, Marcos; Sauka-Spengler, Tatjana et al. (2014) Expression and function of transcription factor cMyb during cranial neural crest development. Mech Dev 132:38-43

Showing the most recent 10 out of 118 publications