The proposed work falls into three general areas. The Initial objective is to extend solved gene regulatory networks (GRNs) controlling sea urchin embryonic specification, up to gastrula stage, to encompass the whole of the embryo. This will require de novo solution for one remaining complex domain of the embryo. Following this we will build a predictive digital computational model of regulatory specification throughout the embryo from a few h after fertilization to 30h, including all interactions between domains, using the approach and software recently applied to the endomesodermal half of the embryo. A second objective is to utilize synthetic re-engineering to ascertain the logic processing functions and to answer other questions about the meaning of particular network subcircuit designs encountered in the sea urchin endomesoderm GRN. Specifically we will target double negative gate circuitry, feedback circuitry, and also redeploy differentiation gene batteries. These studies will be carried out in the context of the developing embryo, rather than in isolated "toy" circuits, and will utilize combinations of recombineered BACs. Thirdly a set of collaborative proposals is presented in which the Davidson lab will work together with the McClay lab on their major objective of deciphering the control circuitry for morphogenetic functions, and the Davidson lab will work together with the Bronner lab to aid in their objective of obtaining comparative GRN analysis between cranial and trunk neural crest.

Public Health Relevance

The only way medical practice will advance beyond elegant forms of bandaids and single molecule drug targets will be by interventions at the level of organization that life systems actually operate, particularly the control systems. This Project concerns the most advanced example of genomic control systems biology we have at present. Its successful conclusion will show what the structure of these systems is;how to think about intervening in them;and directly inform considerations of the role of developmentally active regulatory gene mutations in the many forms of human developmental genetic disease we have become aware of. The medical research community is well aware of these points and the Pis of this application are frequently asked by fon/vard looking members of it for collaborations, consultations, symposium presentations etc.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
2P01HD037105-16
Application #
8752112
Study Section
Special Emphasis Panel (ZHD1-DSR-Z (ED))
Project Start
Project End
Budget Start
2014-06-01
Budget End
2015-05-31
Support Year
16
Fiscal Year
2014
Total Cost
$633,926
Indirect Cost
$243,549
Name
California Institute of Technology
Department
Type
DUNS #
009584210
City
Pasadena
State
CA
Country
United States
Zip Code
91125
Lyons, Deirdre C; Martik, Megan L; Saunders, Lindsay R et al. (2014) Specification to biomineralization: following a single cell type as it constructs a skeleton. Integr Comp Biol 54:723-33
Tu, Qiang; Cameron, R Andrew; Davidson, Eric H (2014) Quantitative developmental transcriptomes of the sea urchin Strongylocentrotus purpuratus. Dev Biol 385:160-7
Warner, Jacob F; McCarthy, Ali M; Morris, Robert L et al. (2014) Hedgehog signaling requires motile cilia in the sea urchin. Mol Biol Evol 31:18-22
Warner, Jacob F; McClay, David R (2014) Perturbations to the hedgehog pathway in sea urchin embryos. Methods Mol Biol 1128:211-21
Kerosuo, Laura; Bronner, Marianne E (2014) Biphasic influence of Miz1 on neural crest development by regulating cell survival and apical adhesion complex formation in the developing neural tube. Mol Biol Cell 25:347-55
Hochgreb-Hägele, Tatiana; Koo, Daniel E S; Das, Neha M et al. (2014) Zebrafish stem/progenitor factor msi2b exhibits two phases of activity mediated by different splice variants. Stem Cells 32:558-71
Cheng, Xianrui; Lyons, Deirdre C; Socolar, Joshua E S et al. (2014) Delayed transition to new cell fates during cellular reprogramming. Dev Biol 391:147-57
Kwon, Seung-Hae; Park, Ok Kyu; Nie, Shuyi et al. (2014) Bioinformatic analysis of nematode migration-associated genes identifies novel vertebrate neural crest markers. PLoS One 9:e103024
Simões-Costa, Marcos; Tan-Cabugao, Joanne; Antoshechkin, Igor et al. (2014) Transcriptome analysis reveals novel players in the cranial neural crest gene regulatory network. Genome Res 24:281-90
Betancur, Paola; Simões-Costa, Marcos; Sauka-Spengler, Tatjana et al. (2014) Expression and function of transcription factor cMyb during cranial neural crest development. Mech Dev 132:38-43

Showing the most recent 10 out of 118 publications