The long term goal of this Program is to elucidate the manner in which disruption of normal cohesin function results in the multisystem developmental disorder Cornelia de Lange syndrome (CdLS) and to identify downstream effectors of cohesin function that are important in the pathogenesis of more common isolated birth defects of the types (e.g. congenital heart defects, cleft palate, diaphragmatic hernias, limb defects) seen in constellation in CdLS. The PI (Dr. Krantz) and Project Leaders (Dr. Lander and Dr. Dorsett) of this Program established a successful collaboration since the Pi's discovery of the first CdLS gene (NIPBL) and the initial implication of cohesin in human developmental disorders. At the inception of this Program the role of NIPBL and cohesin in mammalian development was largely unknown. Dr. Dorsett's discovery that the NIPBL ortholog in Drosophila (nipped-b) was a key regulator of gene expression, prompted the initial hypothesis that disruption of cohesin's non-canonical role in gene regulation was the underlying mechanism involved in causing CdLS. This Program Project has built, and will continue to build, on the diverse, but complementary, strengths, experience and resources available to the project leaders. A three-pronged approach to studying this gene and pathway in humans (Project I), mouse and zebrafish (Project II) and Drosophila (Project III) has led to significant discoveries into how cohesin and its regulators function, the identification of novel CdLS genes, the characterization of a group of developmental disorders collectively termed "cohesinopathies", as well as the establishment of valuable resources including the only Nipbl mutant mouse model, multiple mutant Drosophila lines and the world's largest repository of cohesin mutant human cell lines and clinical information. In this renewal our collaborative team will use innovative approaches to continue to synergistically characterize the function, interactions and role of the structural and regulatory cohesin proteins involved in CdLS, and their downstream targets, in causing syndromic and isolated human structural birth defects. This Program is supported by a data- and resource-sharing core that will fuel all three Projects and an administrative core to oversee, facilitate and optimize the interactions of all Projects.

Public Health Relevance

CdLS is a multisystem developmental disorder caused by mutations in structural and regulatory cohesin genes. Recent discoveries have identified a non-canonical role of cohesin as a critical regulator of gene expression, disruption of which results in significant developmental consequences. This Program outlines a plan to characterize cohesin's function in gene regulation, identify its effector genes and evaluate their role in causing isolated birth defects of the types seen in CdLS.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD052860-07
Application #
8264763
Study Section
Special Emphasis Panel (ZHD1-DSR-N (KJ))
Program Officer
Javois, Lorette Claire
Project Start
2006-05-01
Project End
2016-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
7
Fiscal Year
2012
Total Cost
$1,168,157
Indirect Cost
$193,562
Name
Children's Hospital of Philadelphia
Department
Type
DUNS #
073757627
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Muto, Akihiko; Ikeda, Shingo; Lopez-Burks, Martha E et al. (2014) Nipbl and mediator cooperatively regulate gene expression to control limb development. PLoS Genet 10:e1004671
Zuin, Jessica; Franke, Vedran; van Ijcken, Wilfred F J et al. (2014) A cohesin-independent role for NIPBL at promoters provides insights in CdLS. PLoS Genet 10:e1004153
Krantz, Ian D (2014) Cohesin embraces new phenotypes. Nat Genet 46:1157-8
Visnes, T; Giordano, F; Kuznetsova, A et al. (2014) Localisation of the SMC loading complex Nipbl/Mau2 during mammalian meiotic prophase I. Chromosoma 123:239-52
Dorsett, Dale; Kassis, Judith A (2014) Checks and balances between cohesin and polycomb in gene silencing and transcription. Curr Biol 24:R535-9
Kaiser, Frank J; Ansari, Morad; Braunholz, Diana et al. (2014) Loss-of-function HDAC8 mutations cause a phenotypic spectrum of Cornelia de Lange syndrome-like features, ocular hypertelorism, large fontanelle and X-linked inheritance. Hum Mol Genet 23:2888-900
Slavin, Thomas P; Krantz, Ian (2013) Response to "germline mosaicism in Cornelia de Lange syndrome: dilemmas and risk figures" by Mariani et al. Am J Med Genet A 161A:1827
Jyonouchi, Soma; Orange, Jordan; Sullivan, Kathleen E et al. (2013) Immunologic features of Cornelia de Lange syndrome. Pediatrics 132:e484-9
Mannini, Linda; Cucco, Francesco; Quarantotti, Valentina et al. (2013) Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome. Hum Mutat 34:1589-96
Schaaf, Cheri A; Misulovin, Ziva; Gause, Maria et al. (2013) Cohesin and polycomb proteins functionally interact to control transcription at silenced and active genes. PLoS Genet 9:e1003560

Showing the most recent 10 out of 47 publications