The Expression Core will determine the developmental times and tissues in which candidate genes identified by Projects I, II and III are expressed. These studies will determine both RNA and/or protein expression patterns using immunohistochemistry or in situ hybridiation, whichever is deemed appropriate. Further, genes of particular interest will undergo analysis using the RCAS-TVA system for tissue expression of both wildtype and dominant negative proteins. Diaphragm whole mounts are difficult to examine, but the director and staff of this core have learned the necessary techniques from Dr. Akerman. Lung organ culture has been in use in the lab for 20 years. RNAi technology has been used by the Pis for the past 8 years. Together with the Drosophila Core, RNAi technology will be uniquely available for the program project. Brief descriptions of the protocols that Dr. Loscertales uses routinely which will be instrumental in analyzing CDH candidate genes follow.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD068250-03
Application #
8515488
Study Section
Special Emphasis Panel (ZHD1-DSR-N)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
3
Fiscal Year
2013
Total Cost
$95,939
Indirect Cost
$47,920
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Anglani, F; Terrin, L; Brugnara, M et al. (2018) Hypercalciuria and nephrolithiasis: Expanding the renal phenotype of Donnai-Barrow syndrome. Clin Genet 94:187-188
Qi, Hongjian; Yu, Lan; Zhou, Xueya et al. (2018) De novo variants in congenital diaphragmatic hernia identify MYRF as a new syndrome and reveal genetic overlaps with other developmental disorders. PLoS Genet 14:e1007822
Zhu, Qihui; High, Frances A; Zhang, Chengsheng et al. (2018) Systematic analysis of copy number variation associated with congenital diaphragmatic hernia. Proc Natl Acad Sci U S A 115:5247-5252
Kardon, Gabrielle; Ackerman, Kate G; McCulley, David J et al. (2017) Congenital diaphragmatic hernias: from genes to mechanisms to therapies. Dis Model Mech 10:955-970
Longoni, Mauro; High, Frances A; Qi, Hongjian et al. (2017) Genome-wide enrichment of damaging de novo variants in patients with isolated and complex congenital diaphragmatic hernia. Hum Genet 136:679-691
Li, Taibo; Wernersson, Rasmus; Hansen, Rasmus B et al. (2017) A scored human protein-protein interaction network to catalyze genomic interpretation. Nat Methods 14:61-64
Donahoe, Patricia K; Longoni, Mauro; High, Frances A (2016) Polygenic Causes of Congenital Diaphragmatic Hernia Produce Common Lung Pathologies. Am J Pathol 186:2532-43
Sanford, Ethan L; Choy, Kwong W; Donahoe, Patricia K et al. (2016) MiR-449a Affects Epithelial Proliferation during the Pseudoglandular and Canalicular Phases of Avian and Mammal Lung Development. PLoS One 11:e0149425
High, Frances A; Bhayani, Pooja; Wilson, Jay M et al. (2016) De novo frameshift mutation in COUP-TFII (NR2F2) in human congenital diaphragmatic hernia. Am J Med Genet A 170:2457-61
Loscertales, Maria; Nicolaou, Fotini; Jeanne, Marion et al. (2016) Type IV collagen drives alveolar epithelial-endothelial association and the morphogenetic movements of septation. BMC Biol 14:59

Showing the most recent 10 out of 20 publications