The OI Genomics Core will be a resource that actively collaborates with project investigators by providing advanced and specialized methods in genotyping and high-throughput sequence analysis to assist in identifying new human genetic defects that cause recessive osteogenesis imperfecta. The Core will also provide capabilities to validate genes identified in the initial screen by analyzing segregation patterns of the mutations in the index families and sequence analysis in additional patients with OI phenotypes. The Cohn laboratory has had a longstanding working collaboration with all of the other members of the Program Project team, including specific studies of osteogenesis imperfecta. Because the methods to be used are well established within the laboratory and apply broadly to the proposed projects, consolidating the gene discovery methodologies in the Core (rather than each individual project) will provide both efficiency and cost savings.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD070394-04
Application #
8696944
Study Section
Special Emphasis Panel (ZHD1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Baylor College of Medicine
Department
Type
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77030
Duran, Ivan; Martin, Jorge H; Weis, Mary Ann et al. (2017) A Chaperone Complex Formed by HSP47, FKBP65, and BiP Modulates Telopeptide Lysyl Hydroxylation of Type I Procollagen. J Bone Miner Res 32:1309-1319
Hudson, David M; Weis, MaryAnn; Rai, Jyoti et al. (2017) P3h3-null and Sc65-null Mice Phenocopy the Collagen Lysine Under-hydroxylation and Cross-linking Abnormality of Ehlers-Danlos Syndrome Type VIA. J Biol Chem 292:3877-3887
Machol, Keren; Jain, Mahim; Almannai, Mohammed et al. (2017) Corner fracture type spondylometaphyseal dysplasia: Overlap with type II collagenopathies. Am J Med Genet A 173:733-739
Lee, Chae Syng; Fu, He; Baratang, Nissan et al. (2017) Mutations in Fibronectin Cause a Subtype of Spondylometaphyseal Dysplasia with ""Corner Fractures"". Am J Hum Genet 101:815-823
Abbott, Megan; Jain, Mahim; Pferdehirt, Rachel et al. (2017) Neonatal fractures as a presenting feature of LMOD3-associated congenital myopathy. Am J Med Genet A 173:2789-2794
Marom, Ronit; Jain, Mahim; Burrage, Lindsay C et al. (2017) Heterozygous variants in ACTL6A, encoding a component of the BAF complex, are associated with intellectual disability. Hum Mutat 38:1365-1371
Zeng, Huan-Chang; Bae, Yangjin; Dawson, Brian C et al. (2017) MicroRNA miR-23a cluster promotes osteocyte differentiation by regulating TGF-? signalling in osteoblasts. Nat Commun 8:15000
Joeng, Kyu Sang; Lee, Yi-Chien; Lim, Joohyun et al. (2017) Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest 127:2678-2688
Lim, Joohyun; Grafe, Ingo; Alexander, Stefanie et al. (2017) Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone 102:40-49
Madan, Simran; Liu, Wei; Lu, James T et al. (2017) A non-mosaic PORCN mutation in a male with severe congenital anomalies overlapping focal dermal hypoplasia. Mol Genet Metab Rep 12:57-61

Showing the most recent 10 out of 80 publications