The aim of the Core is to provide support and enhance the progress, productivity, cost-effectiveness, and outcome of the three research projects. The research projects focus on human and mouse genetic approaches to uncover genes for non-syndromic conotruncal heart defects (CTDs). All of the projects will utilize the Core, as it will have a fundamental role in administrating the Program. The Core will also help in human subject recruitment. It will recruit new 22q11 DS subjects and their parents for expanding the CNV landscape and to provide a replication of the GWAS, as proposed in Project 1. In addition, investigators in the Core, will oversee evolving clinical phenotyping. Specifically, Project 3 depends on an up to date understanding of the 22q11 DS phenotype and how it relates to non-syndromic malformations. The """"""""phenotyping center"""""""" for which the Core in part serves, will provide essential intellectual guidance in areas of clinical human genetics. Finally, the core will make decisions as to which research site will carry out genomic assays including Affymetrix 6.0 arrays (Project 1), genotyping (Projects 1 and 2), sequence capture and next generation sequencing (NGS;Projects 1 and 2). The Core will negotiate best pricing and services when they are needed. The core will also organize travel for the Pi's for semimonthly meetings and travel to the NICHD Structural Birth Defects meeting in Washington DC.

Public Health Relevance

Relevance: The program to discover genes for cardiac outflow development and disease will help to develop future therapeutics for treatment. The goal of the core is to help recruit human subjects with the 22q11.2 deletion and to support Projects 1, 2 and 3 dministratively.

Agency
National Institute of Health (NIH)
Institute
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Type
Research Program Projects (P01)
Project #
5P01HD070454-02
Application #
8379706
Study Section
Special Emphasis Panel (ZHD1-DSR-Y)
Project Start
Project End
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
2
Fiscal Year
2012
Total Cost
$129,271
Indirect Cost
$66,639
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
110521739
City
Bronx
State
NY
Country
United States
Zip Code
10461
Kruszka, Paul; Addissie, Yonit A; McGinn, Daniel E et al. (2017) 22q11.2 deletion syndrome in diverse populations. Am J Med Genet A 173:879-888
Guo, Tingwei; Repetto, Gabriela M; McDonald McGinn, Donna M et al. (2017) Genome-Wide Association Study to Find Modifiers for Tetralogy of Fallot in the 22q11.2 Deletion Syndrome Identifies Variants in the GPR98 Locus on 5q14.3. Circ Cardiovasc Genet 10:
Racedo, Silvia E; Hasten, Erica; Lin, Mingyan et al. (2017) Reduced dosage of ?-catenin provides significant rescue of cardiac outflow tract anomalies in a Tbx1 conditional null mouse model of 22q11.2 deletion syndrome. PLoS Genet 13:e1006687
Johnston, H Richard; Chopra, Pankaj; Wingo, Thomas S et al. (2017) PEMapper and PECaller provide a simplified approach to whole-genome sequencing. Proc Natl Acad Sci U S A 114:E1923-E1932
Agopian, A J; Goldmuntz, Elizabeth; Hakonarson, Hakon et al. (2017) Genome-Wide Association Studies and Meta-Analyses for Congenital Heart Defects. Circ Cardiovasc Genet 10:e001449
Xie, Hongbo M; Werner, Petra; Stambolian, Dwight et al. (2017) Rare copy number variants in patients with congenital conotruncal heart defects. Birth Defects Res 109:271-295
Lopez-Rivera, Esther; Liu, Yangfan P; Verbitsky, Miguel et al. (2017) Genetic Drivers of Kidney Defects in the DiGeorge Syndrome. N Engl J Med 376:742-754
Guo, Xingyi; Delio, Maria; Haque, Nousin et al. (2016) Variant discovery and breakpoint region prediction for studying the human 22q11.2 deletion using BAC clone and whole genome sequencing analysis. Hum Mol Genet 25:3754-3767
Mlynarski, Elisabeth E; Xie, Michael; Taylor, Deanne et al. (2016) Rare copy number variants and congenital heart defects in the 22q11.2 deletion syndrome. Hum Genet 135:273-85
Hestand, Matthew S; Nowakowska, Beata A; Vergaelen, Elfi et al. (2016) A catalog of hemizygous variation in 127 22q11 deletion patients. Hum Genome Var 3:15065

Showing the most recent 10 out of 35 publications