In response to the preovulatory LH surge, the preovulatory follicle rapidly increases progesterone production, which is essential for ovulation and/or corpus luteum formation. Although this rise in progesterone level has been mainly linked to a few LH-induced genes involved in steroidogenesis (e.g., StAR, Cypi 1 a l , and HSD3b), but there are many gaps in our understanding of periovulatory accumulation of progesterone. In this proposal, we put forward a novel protein, CIPAR1 (castration-induced prostatic apoptosis-related protein 1), as a vital mediator of progesterone accumulation in the periovulatory follicle. We have recently demonstrated the LH surge increases the expression of Ciparl in periovulatory follicles of rodent ovaries. More importantly, our preliminary study using granulosa cell cultures showed that knockdown of Ciparl expression resulted in significant reduction of progesterone levels. Based on these novel findings, we hypothesize that induction of CIPAR1 by the LH surge is crucial for progesterone accumulation in periovulatory follicles, thus ovulation and luteinization.
In specific Aim#1, we will demonstrate that the alteration of Ciparl expression by silencing or over-expression affects progesterone production in rat periovulatory follicles using both in vivo and in vitro models. As the first approach to pinpoint the functional contribution of C1PAR1 in periovulatory follicles, we will identify the genes and proteins that are differentially expressed when Ciparl expression is silenced or over-expressed in periovulatory follicles. Because littie is known about cellular function of CIPAR1, Specific Aim #2 focuses on first determining the cellular location of CIPAR1 in periovulatory granulosa cells using confocal co-localization and/or subcellular fractionated protein analyses and then identifying CIPAR1 interacting proteins in periovulatory granulosa cells using immunoprecipitation, followed by a proteomic approach. Other than our preliminary data detecting Ciparl expression in human granulosa cells, nothing is known about CIPAR1 in human tissues. In collaboration with Drs. Brannstrum and Duffy, specific Aim #3 will determine whether Ciparl expression is hormonally regulated during the periovulatory period and critical for LH-induced progesterone production in humans and/or macaques. Data obtain from the proposed studies will unravel the role of C1PAR1 as a novel and critical mediator of progesterone accumulation in periovulatory follicles of primates as well as rodents.

Public Health Relevance

Progesterone plays a vital role in many aspects of reproduction, including ovulation and corpus function, therefore female fertility. Identifying the cellular function of CIPAR1 will improve our understanding of mechanisms controlling progesterone production and may suggest a novel target for managing female fertility.

National Institute of Health (NIH)
Eunice Kennedy Shriver National Institute of Child Health & Human Development (NICHD)
Research Program Projects (P01)
Project #
Application #
Study Section
Special Emphasis Panel (ZHD1-DRG-D (41))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Kentucky
United States
Zip Code
Cacioppo, Joseph A; Lin, Po-Ching Patrick; Hannon, Patrick R et al. (2017) Granulosa cell endothelin-2 expression is fundamental for ovulatory follicle rupture. Sci Rep 7:817
Puttabyatappa, Muraly; Al-Alem, Linah F; Zakerkish, Farnosh et al. (2017) Induction of Tissue Factor Pathway Inhibitor 2 by hCG Regulates Periovulatory Gene Expression and Plasmin Activity. Endocrinology 158:109-120
Choi, Yohan; Wilson, Kalin; Hannon, Patrick R et al. (2017) Coordinated Regulation Among Progesterone, Prostaglandins, and EGF-Like Factors in Human Ovulatory Follicles. J Clin Endocrinol Metab 102:1971-1982
Kim, Soon Ok; Trau, Heidi A; Duffy, Diane M (2017) Vascular endothelial growth factors C and D may promote angiogenesis in the primate ovulatory follicle. Biol Reprod 96:389-400
Cacioppo, Joseph A; Koo, Yongbum; Lin, Po-Ching Patrick et al. (2016) Generation of an estrogen receptor beta-iCre knock-in mouse. Genesis 54:38-52
Cerny, Katheryn L; Ribeiro, Rosanne A C; Jeoung, Myoungkun et al. (2016) Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome. PLoS One 11:e0147685
Oakley, Oliver R; Kim, Kee Jun; Lin, Po-Ching et al. (2016) Estradiol Synthesis in Gut-Associated Lymphoid Tissue: Leukocyte Regulation by a Sexually Monomorphic System. Endocrinology 157:4579-4587
Trau, Heidi A; Brännström, Mats; Curry Jr, Thomas E et al. (2016) Prostaglandin E2 and vascular endothelial growth factor A mediate angiogenesis of human ovarian follicular endothelial cells. Hum Reprod 31:436-44
Wilson, Kalin; Park, Jiyeon; Curry Jr, Thomas E et al. (2016) Core Binding Factor-? Knockdown Alters Ovarian Gene Expression and Function in the Mouse. Mol Endocrinol 30:733-47
Kim, Soon Ok; Duffy, Diane M (2016) Mapping PTGERs to the Ovulatory Follicle: Regional Responses to the Ovulatory PGE2 Signal. Biol Reprod 95:33

Showing the most recent 10 out of 20 publications