APPROACHES TO TREATING MTDNA-BASED MITOCHONDRIAL DISEASE There are no generalizable rational treatments for patients with mitochondrial diseases due to deficiency in oxidative phosphorylation (OxPhos). We propose here to study pharmacological approaches to treat patients with mitochondrial diseases due to mutations in mtDNA, based on our discovery that specific agents can "shift" the mutation load and/or rescue mitochondrial function in cells harboring mtDNA mutations. Specifically, we have found that the mTOR inhibitor rapamycin (sirolimus;trade name Rapamune) induces mitophagy in cells carrying homoplasmic mtDNA mutations, but does not do so in wild-type cells. Remarkably, we have now found that rapamycin treatment of heteroplasmic cells containing different pathogenic mtDNA mutations elicited a dramatic improvement in bioenergetic function, as did mdivi-1, an inhibitor of mitochondrial fission, but surprisingly, with no apparent reduction in mutant load. We now propose to follow up on these exciting results, in three ways. First, we will examine in greater detail the ability of rapamycin, mdivi-1, and other agents to restore mitochondrial function in heteroplasmic cells. Second, we will try to determine the mechanism by which functional rescue occurs, using both targeted (e,g, genetic knockdown) and unbiased (e.g. microarray) approaches. Third, we will assess the possibility of treating patients with rapamycin in a small clinical trial by first treating Dr. Hirano's mouse model of TK2 deficiency, which causes mtDNA depletion (synergy with Projects 1 and 3). If successful, the use of rapamycin or similar compounds could become the basis of the first rational treatment of mtDNA-based OxPhos diseases.

Agency
National Institute of Health (NIH)
Type
Research Program Projects (P01)
Project #
1P01HD080642-01
Application #
8741706
Study Section
Developmental Biology Subcommittee (CHHD)
Project Start
Project End
Budget Start
Budget End
Support Year
1
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10032
Joseph, Leroy C; Barca, Emanuele; Subramanyam, Prakash et al. (2016) Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes. PLoS One 11:e0145750
Barca, E; Musumeci, O; Montagnese, F et al. (2016) Cerebellar ataxia and severe muscle CoQ10 deficiency in a patient with a novel mutation in ADCK3. Clin Genet 90:156-60
Torres-Torronteras, Javier; Cabrera-Pérez, Raquel; Barba, Ignasi et al. (2016) Long-Term Restoration of Thymidine Phosphorylase Function and Nucleoside Homeostasis Using Hematopoietic Gene Therapy in a Murine Model of Mitochondrial Neurogastrointestinal Encephalomyopathy. Hum Gene Ther 27:656-67
Fryer, Robert H; Bain, Jennifer M; De Vivo, Darryl C (2016) Mitochondrial Encephalomyopathy Lactic Acidosis and Stroke-Like Episodes (MELAS): A Case Report and Critical Reappraisal of Treatment Options. Pediatr Neurol 56:59-61
Dalla Rosa, Ilaria; Cámara, Yolanda; Durigon, Romina et al. (2016) MPV17 Loss Causes Deoxynucleotide Insufficiency and Slow DNA Replication in Mitochondria. PLoS Genet 12:e1005779
Cloonan, Suzanne M; Glass, Kimberly; Laucho-Contreras, Maria E et al. (2016) Mitochondrial iron chelation ameliorates cigarette smoke-induced bronchitis and emphysema in mice. Nat Med 22:163-74
Engelstad, Kristin; Sklerov, Miriam; Kriger, Joshua et al. (2016) Attitudes toward prevention of mtDNA-related diseases through oocyte mitochondrial replacement therapy. Hum Reprod 31:1058-65
Barca, Emanuele; Tang, Maoxue; Kleiner, Giulio et al. (2016) CoQ10 Deficiency Is Not a Common Finding in GLUT1 Deficiency Syndrome. JIMD Rep 29:47-52
Sadat, Roa; Barca, Emanuele; Masand, Ruchi et al. (2016) Functional cellular analyses reveal energy metabolism defect and mitochondrial DNA depletion in a case of mitochondrial aconitase deficiency. Mol Genet Metab 118:28-34
Varma, Hemant; Faust, Phyllis L; Iglesias, Alejandro D et al. (2016) Whole exome sequencing identifies a homozygous POLG2 missense variant in an infant with fulminant hepatic failure and mitochondrial DNA depletion. Eur J Med Genet 59:540-5

Showing the most recent 10 out of 26 publications