The pathogenesis of hypoxia-induced pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and vascular remodeling contributingto increased pulmonary vascular resistance leading to right heart failure. These responses are characterized by functional changes in resident vascular wall cells including smooth muscle (SMC), endothelial,and fibroblast, as well as recruitment of circulating progenitor and inflammatory cells. Our preliminary data indicatethat hypoxia leads to rapid activation of Akt in SMC of the lung vasculature. PTEN is a negative regulator of PI3-kinase/Akt/mTOR signaling, and an inhibitor of SMC proliferation. We have shown that SMC-specific, targeted PTEN mutant mice (PTEN KO) spontaneously develop pulmonary hypertension. PTEN KO mice also exhibit increased perivascular and serum chemokine levels, increases in circulating progenitor cells, and trafficking of progenitor cells to major vessels and the lung. Work by other investigators in this PPG demonstrated that rosiglitazone, a specific activator of the nuclear receptor PPARy, attenuates hypoxia-induced pulmonary vascular remodeling. In other systems, the ability of PPARy to inhibit cell proliferation and regulate anti-inflammatory responses is mediated, in large part, through the upregulation of PTEN expression and/or activity. Based on these collective observations, we hypothesize that inactivation of PTEN in pulmonary arterial SMC will induce severe PAH in response to chronic hypoxia. This response will be mediated by direct effects on SMC hyperplasia as well as the production of chemokines by SMC which will be involved in the recruitment of progenitor/pro-inflammatory cells and may also act in an autocrine fashion on the SMC themselves. Conversely, activation of PPARy will inhibit hypoxia-induced pulmonary vascular remodeling at least in part through the upregulation of PTEN. This project will employ both in vivo and in vitro approaches to test this model.
Two specific aims are proposed.
Aim l will use a novel, tampxifen-inducible PTEN knockout mouse model to examine the effects of SMC-specific deletion of PTEN in mice on chemokine- induced SMC hyperplasia and recruitment of progenitor and inflammatory cells during hypoxia-induced pulmonary vascular remodeling. This model will allow fate-mapping of medial SMC and bone marrow- derived progenitor cells during the pathogenesis of PAH, providing clear information regarding the contributions of these cells in pulmonary vascular remodeling. In vitro studies will use shRNA silencing of PTEN in pulmonary artery SMC to define downstream effectors mediating these responses.
Aim 2 will employ an analogous strategy to specifically delete PPARy in vivo and compare responses with PTEN deficient mice. In vitro experiments will establish the role of PTEN in mediating the effects of PPARy. Finally, the role of PTEN in mediating the protective effects of rosiglitazone and pioglitazone, two well- characterized PPARy activators, will be examined.

Public Health Relevance

The molecular pathways mediating hypoxia-induced PAH involve multiple cell types. This project is designed to specifically examine the contribution of SMC to this process. Novel mouse models in which signaling pathways can be manipulated in a time-dependent fashion specifically in SMC will define the role of SMC. In vitro approaches will delineate molecular pathways controlling growth, phenotypic modulation and cytokine production by these cells. Pharmacological agents regulating these pathways represent novel therapeutic agents for treatment and prevention of PAH.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL014985-40
Application #
8502284
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
40
Fiscal Year
2013
Total Cost
$313,522
Indirect Cost
$107,951
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Cohrs, Randall J; Lee, Katherine S; Beach, Addilynn et al. (2017) Targeted Genome Sequencing Reveals Varicella-Zoster Virus Open Reading Frame 12 Deletion. J Virol 91:
Lapel, Martin; Weston, Philip; Strassheim, Derek et al. (2017) Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Am J Physiol Cell Physiol 312:C56-C70
Lin, Y-C; Sung, Y K; Jiang, X et al. (2017) Simultaneously Targeting Myofibroblast Contractility and Extracellular Matrix Cross-Linking as a Therapeutic Concept in Airway Fibrosis. Am J Transplant 17:1229-1241
Tuder, Rubin M (2017) Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res 367:643-649
Loomis, Zoe; Eigenberger, Paul; Redinius, Katherine et al. (2017) Correction: Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 12:e0173652
Murakami, A; Wang, L; Kalhorn, S et al. (2017) Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma. Oncogenesis 6:e287
de Bourcy, Charles F A; Dekker, Cornelia L; Davis, Mark M et al. (2017) Dynamics of the human antibody repertoire after B cell depletion in systemic sclerosis. Sci Immunol 2:
Cree-Green, Melanie; Gupta, Abhinav; Coe, Gregory V et al. (2017) Insulin resistance in type 2 diabetes youth relates to serum free fatty acids and muscle mitochondrial dysfunction. J Diabetes Complications 31:141-148
Jansing, Nicole L; McClendon, Jazalle; Henson, Peter M et al. (2017) Unbiased Quantitation of Alveolar Type II to Alveolar Type I Cell Transdifferentiation during Repair after Lung Injury in Mice. Am J Respir Cell Mol Biol 57:519-526
Loomis, Zoe; Eigenberger, Paul; Redinius, Katherine et al. (2017) Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 12:e0171219

Showing the most recent 10 out of 117 publications