The Animal Core continues to provide the fundamental support to all PPG investigators in terms of providing services for hemodynamic measurements in rats, mice and calves. This includes mean, systolic and diastolic blood pressures in the pulmonary and systemic vasculature, cardiac outputs and right/ left ventricular function. The Core provides the expertise to measure these parameters in the anesthetized and awake animal models with various systems including the Millar catheter system, echocardiography, pressure filled transducers, and dye dilution method for cardiac output measurements. By providing a wide range of options for hemodynamic measurements the core insures that the individual experimental design can be matched to the appropriate data collection system encompassing all of investigators needs. In addition to hemodynamic services the Core also maintains and provides assistance with use of the hyperand hypobaric chamber facility. Historically, these chambers have been used for the study of pulmonary hypertension. Notably, The facility has recently expanded in size to ~400 sq ft. The hypobaric chambers are depressurized by individual vacuum pumps housed in a separate area. All chambers are equipped with automatic devices to return to ambient conditions in case of power failure. The hyperbaric chambers are pressurized by filtered compressed air and typically used to maintain animals at sea level pressure (760 mmHg). Besides providing technical (hemodynamic) and methodological (chambers) support the Core also assists with maintenance of breeding colonies for inbred mice and generation of tissue-specific knockout models. This includes maintenance of breeding colonies for inbred mice and generation of tissue-specific knockout models. The Core will assist investigators with the breeding, genotyping, and maintenance of these animal colonies as needed. In addition, the Animal Core will be involved in the generation of targeted knockout models. Specific to this proposal, investigators of this PPG project are generating inducible smooth musclespecific PTEN, PPARv, and CREB knockout mice

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Research Program Projects (P01)
Project #
Application #
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Colorado Denver
United States
Zip Code
Ding, Yonghui; Xu, Xin; Sharma, Sadhana et al. (2018) Biomimetic soft fibrous hydrogels for contractile and pharmacologically responsive smooth muscle. Acta Biomater 74:121-130
Kumar, Rahul; Graham, Brian (2018) How does inflammation contribute to pulmonary hypertension? Eur Respir J 51:
Jiang, Xinguo; Nicolls, Mark R; Tian, Wen et al. (2018) Lymphatic Dysfunction, Leukotrienes, and Lymphedema. Annu Rev Physiol 80:49-70
Schäfer, Michal; Humphries, Stephen; Stenmark, Kurt R et al. (2018) 4D-flow cardiac magnetic resonance-derived vorticity is sensitive marker of left ventricular diastolic dysfunction in patients with mild-to-moderate chronic obstructive pulmonary disease. Eur Heart J Cardiovasc Imaging 19:415-424
D'Alessandro, Angelo; El Kasmi, Karim C; Plecitá-Hlavatá, Lydie et al. (2018) Hallmarks of Pulmonary Hypertension: Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid Redox Signal 28:230-250
Karoor, Vijaya; Fini, Mehdi A; Loomis, Zoe et al. (2018) Sustained Activation of Rho GTPases Promotes a Synthetic Pulmonary Artery Smooth Muscle Cell Phenotype in Neprilysin Null Mice. Arterioscler Thromb Vasc Biol 38:154-163
Stenmark, Kurt R; Graham, Brian B (2018) Urocortin 2: will a drug targeting both the vasculature and the right ventricle be the future of pulmonary hypertension therapy? Cardiovasc Res 114:1057-1059
Madhavan, Krishna; Frid, Maria G; Hunter, Kendall et al. (2018) Development of an electrospun biomimetic polyurea scaffold suitable for vascular grafting. J Biomed Mater Res B Appl Biomater 106:278-290
Stenmark, Kurt R; Frid, Maria G; Graham, Brian B et al. (2018) Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension. Cardiovasc Res 114:551-564
Schäfer, Michal; Kheyfets, Vitaly O; Barker, Alex J et al. (2018) Reduced shear stress and associated aortic deformation in the thoracic aorta of patients with chronic obstructive pulmonary disease. J Vasc Surg 68:246-253

Showing the most recent 10 out of 148 publications