The Tissue Core provides expertise, guidance, and standardized methodology for performing lung structural analysis including inflation, fixation, immunohistochemistry, laser capture micro dissection, fluorescence in situ hybridization (FISH), and morphometric analysis. The Core assists with precise site-specific isolation of vascular tissue including micro-dissection techniques and comparison of phenotypic differences between proximal and distal cells. The Core efficiently provides a wide variety of freshly dispersed and cultured resident vascular cells isolated, grown, and, characterized in a standardized way. Available cells include vascular smooth muscle cells, endothelial cells, and adventitial fibroblasts harvested from rodent, bovine and human tissue. The Core uses immunofluorescent staining with cell-type-specific antibody probes to document identity, extent of homogeneity or heterogeneity, and cell-culture-induced changes in differentiation. Cell sorting capability is available to improve purity and yield of harvested microvascular cell populations. The Core routinely performs in vitro cell proliferation, toxicity, apoptosis, and migration assays. Digital imaging is used to catalogue the morphological appearance of cell populations after initial isolation. The Core assists with application of short and long-term hypoxic and mechanical stress stimulation to freshly dispersed and cultured cells and the use of co-culture techniques to assess the potential modulatory role of neighboring vascular cells. The Core achieves economies of scale through centralized processing of vascular cells and bulk ordering of supplies. Additional responsibilities of the Core include: coordinated maintenance and upgrading of tissue-culture equipment;short-term radioactive waste management; restocking and maintenance of radioisotope work area;and ongoing training of fellows, research staff and student workers in staining, imaging and cell culture techniques. The Core facilitates assess to human lung tissue through the Lung Tissue Research Consortium.

Public Health Relevance

The Tissue Core encourages a consistent approach to the measurement of structural changes and gene expression in lung and heart in response to various forms of stress. The Core facilitates the isolation of precisely characterized vascular cell populations for mechanistic studies. The results provide important information about how pulmonary hypertension occurs and may be treated more effectively in the future.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL014985-40
Application #
8502293
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
40
Fiscal Year
2013
Total Cost
$251,238
Indirect Cost
$86,504
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Cohrs, Randall J; Lee, Katherine S; Beach, Addilynn et al. (2017) Targeted Genome Sequencing Reveals Varicella-Zoster Virus Open Reading Frame 12 Deletion. J Virol 91:
Lapel, Martin; Weston, Philip; Strassheim, Derek et al. (2017) Glycolysis and oxidative phosphorylation are essential for purinergic receptor-mediated angiogenic responses in vasa vasorum endothelial cells. Am J Physiol Cell Physiol 312:C56-C70
Lin, Y-C; Sung, Y K; Jiang, X et al. (2017) Simultaneously Targeting Myofibroblast Contractility and Extracellular Matrix Cross-Linking as a Therapeutic Concept in Airway Fibrosis. Am J Transplant 17:1229-1241
Tuder, Rubin M (2017) Pulmonary vascular remodeling in pulmonary hypertension. Cell Tissue Res 367:643-649
Loomis, Zoe; Eigenberger, Paul; Redinius, Katherine et al. (2017) Correction: Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 12:e0173652
Murakami, A; Wang, L; Kalhorn, S et al. (2017) Context-dependent role for chromatin remodeling component PBRM1/BAF180 in clear cell renal cell carcinoma. Oncogenesis 6:e287
de Bourcy, Charles F A; Dekker, Cornelia L; Davis, Mark M et al. (2017) Dynamics of the human antibody repertoire after B cell depletion in systemic sclerosis. Sci Immunol 2:
Cree-Green, Melanie; Gupta, Abhinav; Coe, Gregory V et al. (2017) Insulin resistance in type 2 diabetes youth relates to serum free fatty acids and muscle mitochondrial dysfunction. J Diabetes Complications 31:141-148
Jansing, Nicole L; McClendon, Jazalle; Henson, Peter M et al. (2017) Unbiased Quantitation of Alveolar Type II to Alveolar Type I Cell Transdifferentiation during Repair after Lung Injury in Mice. Am J Respir Cell Mol Biol 57:519-526
Loomis, Zoe; Eigenberger, Paul; Redinius, Katherine et al. (2017) Hemoglobin induced cell trauma indirectly influences endothelial TLR9 activity resulting in pulmonary vascular smooth muscle cell activation. PLoS One 12:e0171219

Showing the most recent 10 out of 117 publications