OF SERVICES Image acquisition, image processing, image analysis, and detection and interpretation of fluorescence signals are fundamental tools used in all of the projects. The availability of hardware and software to accomplish these tasks, and the availability of technical support to maintain and improve existing capabilities and to develop new processing methodologies is essential for the effective and timely completion of the proposed studies. The core includes access to confocal microscopy, flow cytometry, atomic force microscopy and total internal reflectance fluorescence microscopy (TIRFM), as well as support for the maintenance of hardware to be used for video image processing and the development of software to facilitate extraction of information from experimental images. In addition, in the current application we propose to expand core capabilities to include support for computational resources. Two Co-investigators have been added to the project, Micah Dembo from Boston University, will provide expertise in analyzing traction force microscopy experiments, and David Gee, an Assistant Professor at Rochester Institute of Technology who holds an adjunct appointment in Biomedical Engineering at the University of Rochester, who is expert in parallel computing applications. Thus, capabilities for both high end parallel computing resources and the ability to analyze traction force microscopy experiments represent significant additions to services provided by the Core. Projects 1, 2, 3 and 5 are engaged in research directions that will benefit from these new resources, and Project 4, to a lesser extent, will benefit from the availability of these capabilities. We have made progress in the past grant period in moving to new hardware platforms, moving to a largely digital imaging acquisition format. One of the primary objectives for the Core in the next funding period will be to provide the technical support and resources for improving capabilities of this new hardware and facilitating its routine use in the proposed studies. We also recognize that the digital world is constantly evolving, and continued support to troubleshoot established technologies and maintain needed levels of imaging capability will be needed throughout the funded period of the program.

Agency
National Institute of Health (NIH)
Institute
National Heart, Lung, and Blood Institute (NHLBI)
Type
Research Program Projects (P01)
Project #
5P01HL018208-37
Application #
8502295
Study Section
Heart, Lung, and Blood Initial Review Group (HLBP)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
37
Fiscal Year
2013
Total Cost
$166,501
Indirect Cost
$31,777
Name
University of Rochester
Department
Type
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Vats, Kanika; Marsh, Graham; Harding, Kristen et al. (2017) Nanoscale physicochemical properties of chain- and step-growth polymerized PEG hydrogels affect cell-material interactions. J Biomed Mater Res A 105:1112-1122
Henry, Steven J; Crocker, John C; Hammer, Daniel A (2016) Motile Human Neutrophils Sense Ligand Density Over Their Entire Contact Area. Ann Biomed Eng 44:886-94
Marsh, Graham; Waugh, Richard E (2016) A simple approach for bioactive surface calibration using evanescent waves. J Microsc 262:245-51
Rocheleau, Anne D; Wang, Weiwei; King, Michael R (2016) Effect of Pseudopod Extensions on Neutrophil Hemodynamic Transport Near a Wall. Cell Mol Bioeng 9:85-95
Svetina, Saša; Kokot, Gašper; Kebe, Tjaša Švelc et al. (2016) A novel strain energy relationship for red blood cell membrane skeleton based on spectrin stiffness and its application to micropipette deformation. Biomech Model Mechanobiol 15:745-58
Rocheleau, Anne D; Cao, Thong M; Takitani, Tait et al. (2016) Comparison of human and mouse E-selectin binding to Sialyl-Lewis(x). BMC Struct Biol 16:10
MacKay, Joanna L; Hammer, Daniel A (2016) Stiff substrates enhance monocytic cell capture through E-selectin but not P-selectin. Integr Biol (Camb) 8:62-72
Hind, Laurel E; Lurier, Emily B; Dembo, Micah et al. (2016) Effect of M1-M2 Polarization on the Motility and Traction Stresses of Primary Human Macrophages. Cell Mol Bioeng 9:455-465
Lim, Kihong; Hyun, Young-Min; Lambert-Emo, Kris et al. (2015) Visualization of integrin Mac-1 in vivo. J Immunol Methods 426:120-7
Beste, Michael T; Lomakina, Elena B; Hammer, Daniel A et al. (2015) Immobilized IL-8 Triggers Phagocytosis and Dynamic Changes in Membrane Microtopology in Human Neutrophils. Ann Biomed Eng 43:2207-19

Showing the most recent 10 out of 249 publications